План урока видимое движение солнца и луны. Урок: Видимое движение планет

Урок 1/7

подробно презентация

Тема: Видимое движение планет.

Ход урока:

1. Повторение материала

А) Вопросы:

I. Сообщение о календаре.

II. Решение задачи №4 (стр. 29).

III. Решение задачи №5 (стр. 29).

IV. Решение задачи №7 (стр. 29).

V. Связь времени с долготой. Всемирное и другие виды времени.
Б) Остальные: 1. Кроссворд

VI. 2. Укажите причины небесных явлений , отмечая напротив каждого варианта вопроса верный номер варианта ответа, например: А1; Б2; В3 и т. д.

VII. 3. Работа по вопросам .

1. Азимут светила 45°, а высота 60°. В какой стороне неба светило?

2. Определите созвездие в котором находится звезда α=4ч14м, δ=16°28".

3. Когда в течение суток зенитное расстояние Солнца равно 90о?

4. Сколько суток содержал в 1918г в РФ в связи с реформой, календарь?

5. Планета видна на расстоянии 120о от Солнца. Верхняя или нижняя эта планета?

7. Сохранится ли видимая с Земли конфигурация созвездий, если астронавт будет наблюдать звездное небо с Марса?

Тест №1

2. Новый материал

1. Состав Солнечной системы:

Планеты - На сегодня известно 8 больших планет со спутниками и кольцами. Карликовые планеты -четыре, начиная с Плутона (бывшей большой планеты) Малые планеты – астероиды = первый Церера (относится теперь к карликовым планетам) открыт в 1801г, расположены в основном в 4-х поясах. Кометы – небольшие тела до 100 км в диаметре, конгломерат пыли и льда, движущиеся по очень вытянутым орбитам. Облако Оорта (резервуар комет). Метеорные тела – небольшие тела от песчинок до камней в несколько метров диаметром (образуются от комет и дробления астероидов). Небольшие при входе в земную атмосферу сгорают, а те, которые достигают Земли – метеориты. Межпланетная пыль – от комет и дробления астероидов. Мелкая выталкивается на периферию Солнечной системы солнечным давлением, а более крупные притягиваются планетами и Солнцем. Межпланетный газ – от Солнца и планет, очень разряжен. В нем распространяется “солнечный ветер” – поток плазмы (ионизированного газа от Солнца). Электромагнитное излучение и гравитационные волны – Солнечная система пронизана магнитными полями Солнца и планет, гравитационными полями и электромагнитными волнами различной длины волн, порождаемые планетами и Солнцем.

2. Петлеобразное движение планет.

Более чем за 2000 лет до НЭ люди заметили, что некоторые звезды перемещаются по небу – их позже греки назвали “блуждающими” – планетами . К ним относили Луну и Солнце. Нынешнее название планет заимствовано у древних римлян. Выяснилось, что планеты блуждают в зодиакальных созвездиях. Но объяснить смог только Н. Коперник .

Траектория движения небесного тела называется его орбитой . Скорости движения планет по орбитам убывают с удалением планет от Солнца. Плоскости орбит всех планет Солнечной системы лежат вблизи плоскости эклиптики, отклоняясь от нее: Меркурий на 7о, Венера на 3,5о; у других наклон еще меньше.
По отношению к орбите и условиям видимости с Земли планеты разделяются на внутренние (Меркурий, Венера) и внешние (Марс, Юпитер, Сатурн, Уран, Нептун). Внешние планеты всегда повернуты к Земле стороной, освещаемой Солнцем. Внутренние планеты меняют свои фазы подобно Луне.

3. Конфигурация планет – характерное взаимное расположение планет относительно Солнца и Земли.

Нижние соединение (верхнее и нижнее – планета находится на прямой Солнце-Земля) и элонгация (западная и восточная – наибольшее угловое удаление планеты от Солнца: Меркурия-28о, Венеры-48о – лучшее время наблюдения планет).

В нижнем соединении Венера и Меркурий периодически проходят по диску Солнца :
Меркурий в мае и ноябре 13 раз в 100 лет. Последние прошли 7.05.2003г и 8.11.2006г, а будут 9.05.2016г и 11.11.2019г.
Венера в июне и декабре повторяются через 8 и 105,5, или 8 и 121,5 лет, последнее было 8.06.2004г а будет 6.06.2012г.

Верхние квадратура (западная и восточная – четверть круга) и соединение (противостояние – когда планета за Землей от Солнца – лучшее время наблюдения внешних планет, она полностью освещена Солнцем).

4. Периоды обращения планет. Н. Коперник получил формулы (уравнения синодического периода ) для расчета периодов обращения планет.
Сидерический (T –звездный) –промежуток времени в течение которого планета совершает полный оборот вокруг Солнца по своей орбите относительно звезд .
Синодический (S) – промежуток времени между двумя последовательными одинаковыми конфигурациями планеты .

Получить полный текст

Астрономическая рефракция - явление преломления (искривления) световых лучей при прохождении через атмосферу, вызванное оптической неоднородностью атмосферного воздуха. Вследствие уменьшения плотности атмосферы с высотой искривленный луч света обращен выпуклостью в сторону зенита.
В зените рефракция минимальна - она возрастает по мере наклона к горизонту до 35" и сильно зависит от физических характеристик атмосферы: состава, плотности, давления, температуры. Вследствие рефракции истинная высота небесных светил всегда меньше их видимой высоты, искажаются форма и угловые размеры светил: на восходе и закате близ горизонта "сплющиваются" диски Солнца и Луны, поскольку нижний край диска поднимается рефракцией сильнее верхнего.
Преломление лучей звездного света в атмосферных слоях (потоках) разной плотности вызывает мерцание звезд - неравномерные усиления и ослабления их блеска, сопровождающиеся изменениями их цвета.

Земная атмосфера рассеивает солнечный свет на случайных микроскопических неоднородностях плотности воздуха, сгущениях и разрежениях размерами м. Интенсивность рассеяния света обратно пропорциональна четвертой степени длины световой волны (закон Рэлея). Сильнее всего рассеиваются короткие волны: фиолетовые, синие и голубые лучи, слабее всего - оранжевые и красные. Вследствие этого земное небо имеет днем голубой цвет. Ночью на Земле никогда не бывает абсолютно темно: рассеянный в атмосфере свет звезд и давно зашедшего Солнца создает ничтожно малую освещенность в 0,0003 лк.
Продолжительность светового времени суток - дня всегда превышает промежуток времени от восхода до захода Солнца. Рассеяние солнечных лучей в земной атмосфере порождает сумерки , плавный переход от светлого времени суток - дня к темному - ночи, и обратно. Продолжительность их определяется положением Солнца на эклиптике и географической широтой места.
гражданские сумерки: период времени от захода Солнца (верхнего края солнечного диска) до его погружения на 6о -7о под горизонт;
навигационные сумерки - до момента погружения Солнца под горизонт на 12о;
астрономические сумерки - пока угол не составит 18о.
На высоких (± 59,5о) широтах Земли наблюдаются белые ночи - явление прямого перехода вечерних сумерек в утренние при отсутствии темного времени суток. Обобщено в таблице.

Космические явления

Небесные явления, возникающие вследствие данных космических явлений

Атмосферные явления

1) Атмосферная рефракция:
- искажение небесных координат светил;
- необходимость поправки экваториальных координат небесных светил на рефракцию;
- искажение формы и угловых размеров небесных светил по высоте на восходе и закате;
- мерцание звезд;
- "зеленый луч".

2) Рассеяние света в атмосфере Земли:
- голубой цвет дневного неба;
- синий, сиреневый цвет вечернего (утреннего) неба;
- сумерки.
- продолжительность светового времени суток (дня) всегда превышает промежуток времени от восхода до захода Солнца;
- белые ночи; полярный день и полярная ночь на высоких широтах;
- свечение ночного неба;
- заря; красный цвет зари;
- покраснение дисков Солнца и Луны на восходе и закате.

III. Закрепление материала

16. Просмотреть пример №3 (стр. 34).

17. Марс в противостоянии виден в созвездии Весов. В каком созвездии находится в это время Солнце?

18. В каком созвездии находится Меркурий (Венера), если планета сейчас в верхнем (нижнем) соединении с Солнцем?

19. 21 июля 2001 года Меркурий в наибольшей западной элонгации. В каком созвездии в какое время суток и сколько времени можно наблюдать эту планету?

20. Каковы условия видимости Земли с поверхности Луны? Орбиты спутника Венеры? С поверхности Марса?

21. CD - "Red Shift 5.1":
= показывается (при необходимости) принцип нахождения объекта в заданное время и пример для Марса нахождения предыдущего и следующего противостояния.
= в каких созвездиях, какова фаза, звездная величина, элонгация и угловой диаметр планет, Солнца, Луны
= какие планеты в октябре находятся в соединении с Солнцем

22. Какова продолжительность года на Марсе, если между двумя противостояниями проходит 780d?

23. Наиболее удобно наблюдать Меркурий вблизи его элонгаций. Почему? Как часто они повторяются, если год на Меркурии равен 88d?

24. Противостояние Юпитера наблюдалось 30 апреля 1994г в 13,9ч. Когда будет следующее противостояние? Будет ли оно видно?

Итог:

1) Что такое конфигурация? Ее виды.

2) Что такое сидерический и синодический период?

3) Состав Солнечной системы.

4) Почему на звездных картах не указывают положения планет?

5) В каких созвездиях надо искать на небе планеты?

6) Какие планеты могут наблюдаться на фоне диска Солнца?

8) Оценки

Домашнее задание: §7; вопросы и задания стр. 35.

Задания из сборника олимпиадных задач:
4.10. На Земле солнечные сутки длиннее звездных, а на Венере – наоборот. Почему?
4.13. Считается, что у Венеры бывает либо утренняя, либо вечерняя видимость. А можно ли наблюдать Венеру в течение одних суток и утром и вечером?

Текст слайда: Видимое движение планет



Текст слайда: Планеты делятся на две группы: нижние (внутренние) – Меркурий и Венера и верхние – Марс, Юпитер, Сатурн, Уран, Нептун и Плутон Нижние планеты Верхние планеты



Текст слайда: Поскольку при наблюдениях с Земли на движение планет вокруг Солнца накладывается еще и движение Земли по своей орбите, планеты перемещаются по небосводу то с востока на запад (прямое движение), то с запада на восток (попятное движение).



Текст слайда: Характер видимого движения планеты зависит от того, к какой группе она принадлежит. Размеры петли тем меньше, чем больше расстояние между планетой и Землей. Планеты описывают петли, а не просто движутся туда-сюда по одной линии исключительно из-за того, что плоскости их орбит не совпадают с плоскостью эклиптики.



Текст слайда: Конфигурация планет 90о Западная элонгация Восточная элонгация Нижнее соединение Верхнее соединение Соединение Противостояние Земля Орбита верхней планеты (Марс) Орбита нижней планеты (Венера) Западная квадратура Восточная квадратура Орбита Земли



Текст слайда: Угловое расстояние Венеры от Солнца меньше, чем угловые расстояния Луны и Юпитера. Луна, Юпитер и Венера в вечернем Париже. Угловое удаление планеты от Солнца называется элонгацией. Наибольшая элонгация Меркурия – 28°, а Венеры – 48°. При восточной элонгации внутренняя планета видна на западе, в лучах вечерней зари, вскоре после захода Солнца.



Текст слайда: При западной элонгации внутренняя планета видна на востоке, в лучах утренней зари, незадолго до восхода Солнца. Венера и Сатурн



Текст слайда: Внешние планеты могут находиться на любом угловом расстоянии от Солнца Юпитер и Сатурн около рассеянного звездного скопления Плеяды в созвездии Тельца



Текст слайда: Венера Юпитер

Слайд №10



Текст слайда: Сидерические и синодические периоды обращений планет Промежуток времени, в течение которого планета совершает полный оборот вокруг Солнца по орбите называется сидерическим (или звездным) периодом обращения (T). Промежуток времени между двумя одинаковыми конфигурациями планеты называется синодическим периодом (S). Земля Уравнения синодического движения: для нижней планеты: 1/S = 1/Т - 1/Tз для верхней планеты: 1/S = 1/Тз - 1/T где Tз – сидерический период Земли, равный 1 году Задача. Как часто повторяются противостояния Марса, сидерический период которого 1,9 года? Дано: Tз= 1 г. Найти: S = ? Решение: 1/S = 1/Тз - 1/T; Ответ: S ≈ 2,1 г. Т = 1,9 г. S = Tз*T / (T – Tз); S ≈ 2,1 г.

11 класс Презентация на тему:

«Видимые движения небесных тел.

Законы Кеплера. Система Земля – Луна»

Выполнил: учитель физики

МБОУ Ишунский УВК

Муниципального образования

Красноперекопский район

Республикики Крым

Бургу Николай Амвросиевич



Цели урока:

  • Расширить представления учащихся о строение Солнечной систем, законов, описывающих движения планет, проявление гравитационного взаимодействия в системе Земля-Луна.
  • Дать учащимся понятие небесная сфера и небесный экватор, склонение светил, эклиптика.
  • Познакомиться с единицами измерения расстояний до небесных тел.


План урока

  • 1. Видимые движения небесных тел. Небесная сфера, эклиптика, небесный экватор, склонение светилы.
  • 2. Н.Коперник и его подход к видимому движению планет и Солнца.
  • 3. Законы движения планет (законы Кеплера).
  • 4. Видимое движение Луны. Синодический месяц (период).
  • 5. Солнечные и лунные затмения.
  • 6. Приливные явления.


Небесная сфера

  • это воображаемая сфера произвольного радиуса, на которую проецируются небесные тела.

свой центр



Склонение

α – прямое восхождение

Небесный экватор

Точка весеннего равноденствия

Круг склонения



Эклиптика

Это большой круг небесной сферы, по которому происходит видимое годовое движение солнца.

Эклиптика проходит через 12 (13 - змееносец) созвездий.



Николай Коперник

и его подход

к видимому движению планет и Солнца

Коперник полагал, что Земля совершает троякое движение:

  • Вращение вокруг оси с периодом в одни сутки, следствием чего является суточное вращение небесной сферы;
  • Движение вокруг Солнца с периодом в год, приводящее к попятным движениям планет;

Суточное движение небесного свода объясняется вращением земли вокруг оси, годичное движение солнца по эклиптике – движением Земли вокруг Солнца, а описываемые планетами петли – сложением движения Земли и планет.

Коперник рассчитал относительное расстояние от планет

до Солнца

Планеты

Меркурий

Расст. от Солнца, а.е.



Законы движения планет (законы Кеплера)

  • Планеты движутся вокруг Солнца по вытянутым эллиптическим орбитам, причем Солнце находится в одной из двух фокальных точек эллипса.
  • Отрезок прямой, соединяющий Солнце и планету, отсекает равные площади за равные промежутки времени
  • Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей их орбит




Видимое движение Луны

Видимое перемещение Луны происходит

неравномерно т.к. Луна движется в пространстве по

эллиптической орбите, в одном из фокусов, которого находится центр Земли. Большая полуось лунной орбиты - радиус Земли.

Положение Луны

относительно

Земли и Солнца

Синодический месяц (период).

Интервал времени между двумя последовательными новолуниями

равный 29,5 суток.



Лунное затмение затмение Луны, которое наступает когда она входит в тень отбрасываемую Землей

Солнечное затмение затмение, которое наступает когда Луна отбрасывает тень на Землю



Во время полнолуний и новолуний лунные и солнечные приливы складываются и наблюдаются самые большие приливы.

Во время приливов уровень воды плавно нарастает, достигая наибольшего значения, а затем постепенно снижается до низшего уровня. Явление приливов вызывается притяжением Луны.

Есть иволги в лесах, и в гласных долгота
В тонических стихах единственная мера,
Но только раз в году бывает разлита
В природе длительность
Как в метрике Гомера.
Как бы цезурою зияет этот День:
Уже с утра покой
И трудные длинноты,
Волы на пастбище,
И золотая лень
Из тростника извлечь богатство
целой ноты.
О. Мандельштам

Урок 4/4

Тема : Изменение вида звездного неба в течение года .

Цель : Познакомится с экваториальной системой координат, видимым годичным движениям Солнца и видам звездного неба (изменением в течение года), научится работать по ПКЗН.

Задачи :
1. Обучающая : ввести понятия годичного(видимого) движение светил: Солнца, Луны, звезд, планет и видов звездного неба; эклиптика; зодиакальные созвездия; точки равноденствия и солнцестояния. Причина "запаздывания" кульминаций. Продолжить формирование умения работать с ПКЗН- отыскание на карте эклиптики, зодиакальных созвездий, звезд по их координатам.
2. Воспитывающая : содействовать формированию навыка выявления причинно-следственных связей; только тщательный анализ наблюдаемых явлений дает возможность проникнуть в сущность казалось бы очевидных явлений.
3. Развивающая : используя проблемные ситуации, подвести учащихся к самостоятельному выводу, что вид звездного неба не остается одинаковым в течении года; актуализируя имеющиеся у учащихся знания работы с географическими картами, сформировать умения и навыки работы с ПКЗН (нахождение координат).

Знать:
1-й уровень (стандарт) - географические и экваториальные координаты, точки в годичном движении Солнца, наклон эклиптики.
2-й уровень - географические и экваториальные координаты, точки в годичном движении Солнца, наклон эклиптики, направления и причины смещения Солнца над горизонтом, зодиакальные созвездия.

Уметь:
1-й уровень (стандарт) - устанавливать по ПКЗН на различные даты года, определять экваториальные координаты Солнца и звезд, находить зодиакальные созвездия.
2-й уровень - устанавливать по ПКЗН на различные даты года, определять экваториальные координаты Солнца и звезд, находить зодиакальные созвездия, пользоваться ПКЗН.

Оборудование: ПКЗН, небесная сфера. Географическая и звездная карта. Модель горизонтальных и экваториальных координат, фото видов звездного неба в разное время года. CD- "Red Shift 5.1" (путь Солнца, Смена времен года). Видеофильм "Астрономия" (ч.1, фр. 1 "Звездные ориентиры").

Межпредметная связь: Суточное и годовое движение Земли. Луна - спутник Земли (природоведение, 3-5 кл). Природно-климатические закономерности (география, 6 кл). Движение по окружности: период и частота (физика, 9 кл)

Ход урока:

I. Опрос учащихся (8 мин) . Можно тест по Небесной сфере Н.Н. Гомулиной, или:
1. У доски :
1. Небесная сфера и горизонтальная система координат.
2. Движение светила в течение суток и кульминация.
3. Перевод часовой меры в градусную и обратно.
2. 3 человека по карточкам :
К-1
1. В какой стороне неба находится светило, имеющее горизонтальные координаты: h=28°, А=180°. Каково его зенитное расстояние? (север, z=90°-28°=62°)
2. Назовите три созвездия, видимые сегодня в течение суток.
К-2
1. В какой стороне неба находится звезда, если ее координаты горизонтальные: h=34 0 , А=90 0 . Каково ее зенитное расстояние? (запад, z=90°-34°=56°)
2. Назовите три яркие звезды, видимые у нас в течение суток.
К-3
1. В какой стороне неба находится звезда, если ее координаты горизонтальные: h=53 0 , А=270 о. Каково ее зенитное расстояние? (восток, z=90°-53°=37°)
2. Сегодня звезда в верхней кульминации в 21 ч 34 м. Когда ее следующее нижняя, верхняя кульминация? (через 12 и 24 часа, точнее через 11 ч 58 м и 23 ч 56 м)
3. Остальные (самостоятельно в парах, пока отвечают у доски)
а) Перевести в градусную меру 21 ч 34 м, 15 ч 21 м 15 с. отв=(21 . 15 0 +34 . 15 " =315 0 +510 " =323 0 30", 15 ч 21 м 15 с =15 . 15 0 +21 . 15 " +15 . 15 " =225 0 + 315" + 225"= 230 0 18"45")
б) Перевести в часовую меру 05 о 15", 13 о 12"24". отв= (05 о 15"=5 . 4 м +15 . 4 c =21 м , 13 о 12"24"=13 . 4 м +12 . 4 c +24 . 1/15 c =52 м +48 c +1,6 c =52 м 49 c ,6)

II. Новый материал (20 мин) Видеофильм "Астрономия" (ч.1, фр. 1 "Звездные ориентиры").

б) Положение светила на небе (небесной среде) также однозначно определяются - в экваториальной системе координат, где за точку отсчета взят небесный экватор . (экваториальные координаты введены впервые Яном Гавелия (1611-1687г, Польша), в каталоге на 1564 звезды составленном в 1661-1687гг) - атлас 1690г с гравюрами и сейчас используется (титул учебника).
Так как координаты звезд не меняются столетиями, поэтому данная система используются для создания карт, атласов, каталогов [списков звезд]. Небесный экватор- плоскость, проходящая через центр небесной сферы перпендикулярно оси мира.

Точки Е -востока, W -запада - точки пересечения небесного экватора с точками горизонта. (Напоминаются точки N и S).
Все суточные параллели небесных светил расположены параллельно небесному экватору (их плоскость перпендикулярна оси мира).

Круг склонения - большой круг небесной сферы проходящей через полюса мира и наблюдаемое светило (точки Р, М, Р").

Экваториальные координаты:
δ (дельта) - склонение светила - угловое расстояние светила от плоскости небесного экватора (аналогична φ ).
α (альфа) - прямое восхождение - угловое расстояние от точки весеннего равноденствия (γ ) вдоль небесного экватора в сторону противоположную суточному вращению небесной сферы (по ходу вращения Земли), до круга склонения (аналогична λ , измеряемой от гринвичского меридиана). Измеряется в градусах от 0 о до 360 о, но обычно в часовой мере.
Понятие прямого восхождения было известно ещё во времена Гиппарха, который определял расположение звёзд в экваториальных координатах в 2-ом столетии до н. э., Но Гиппарх, и его преемники составляли свои каталоги звёзд в эклиптической системе координат. С изобретением телескопа, для астрономов стало возможно наблюдать астрономические объекты с большей детализацией. К тому-же, с помощью телескопа можно было длительное время удерживать объект в поле зрения. Самым лёгким способом оказалось применение экваториальной монтировки для телескопа, которая позволяет телескопу вращаться в той же плоскости, что и экватор Земли. Поскольку экваториальная монтировка стала широко применяться в телескопостроении, экваториальная система координат, была принята.
Первым каталогом звёзд, в котором использовалось прямое восхождение и склонение для определения координат объектов, был в 1729г опубликованный "Atlas Coelestis" звездного неба на 3310 звезд (нумерация используется и сейчас) Джона Флемстида

в) Годичное движение Солнца . Есть светила [Луна, Солнце, Планеты] экваториальные координаты которых меняются быстро. Эклиптика - видимый годовой путь центра солнечного диска по небесной сфере. Наклонена к плоскости небесного экватора в настоящее время под углом 23 о 26", точнее под углом: ε = 23°26’21",448 — 46",815 t — 0",0059 t² + 0",00181 t³, где t — число юлианских столетий, протёкших от начала 2000. Эта формула справедлива для ближайших столетий. В более продолжительных отрезках времени наклон эклиптики к экватору колеблется относительно среднего значения с периодом приблизительно 40000 лет. Кроме того, наклон эклиптики к экватору подвержен короткопериодическим колебаниям с периодом 18,6 лет и амплитудой 18",42, а также более мелким (см. Нутация).
Видимое движение Солнца по эклиптике - отражение действительного движения Земли вокруг Солнца (доказано лишь в 1728г Дж. Брадлеем открытием годичной аберрации).

Космические явления

Небесные явления, возникающие вследствие данных космических явлений

Вращение Земли вокруг оси Физические явления:
1) отклонение падающих тел к востоку;
2) существование сил Кориолиса.
Отображения истинного вращения Земли вокруг своей оси:
1) суточное вращение небесной сферы вокруг оси мира с востока на запад;
2) восход и заход светил;
3) кульминация светил;
4) смена дня и ночи;
5) суточная аберрация светил;
6) суточный параллакс светил
Вращение Земли вокруг Солнца Отображения истинного вращения Земли вокруг Солнца:
1) годичное изменение вида звездного неба (кажущееся движение небесных светил с запада на восток);
2) годичное движение Солнца по эклиптике с запада на восток;
3) изменение полуденной высоты Солнца над горизонтом в течение года; а) изменение продолжительности светового времени суток в течение года; б) полярный день и полярная ночь на высоких широтах планеты;
5) смена времен года;
6) годичная аберрация светил;
7) годичный параллакс светил


Созвездия, через которые проходит эклиптика называются .
Число зодиакальных созвездий (12) равно числу месяцев в году, и каждый месяц обозначается знаком созвездия, в котором Солнце в этот месяц находится.
13-е созвездие Змееносца исключается, хотя через него и проходит Солнце. "Red Shift 5.1" (путь Солнца).

- точка весеннего равноденствия . 21 марта (день равняется ночи).
Координаты Солнца: α ¤ =0 ч, δ ¤ =0 о
Обозначения сохранилось со времен Гиппарха, когда эта точка находилась в созвездии ОВНА → сейчас находится в созвездии РЫБ, В 2602г перейдет в созвездие ВОДОЛЕЯ.
-день летнего солнцестояния . 22 июня (самый длинный день и самая короткая ночь).
Координаты Солнца: α ¤ =6 ч, ¤ =+23 о 26"
Обозначение сохранилось со времен Гиппарха, когда эта точка находилась в созвездии Близнецов, затем была в созвездии Рака, а с 1988г перешла в созвездие Тельца.


- день осеннего равноденствия . 23 сентября (день равен ночи).
Координаты Солнца: α ¤ =12 ч, δ t size="2" ¤ =0 о
Обозначение созвездия Весы сохранилось как обозначение символа правосудия при императоре Августе (63г до НЭ - 14г НЭ), сейчас в созвездии Девы, а в 2442г перейдет в созвездие Льва.
- день зимнего солнцестояния. 22 декабря (самый короткий день и самая длинная ночь).
Координаты Солнца: α ¤ =18 ч, δ ¤ =-23 о 26"
В период Гиппарха точка находилась в созвездии Козерога, сейчас в созвездии Стрельца, а в 2272г перейдет в созвездие Змееносца.


Хотя положение звезд на небе однозначно определяется парой экваториальных координат, но вид звездного неба в месте наблюдения в один и тот же час не остается неизменным.
Наблюдая в полночь кульминацию светил (Солнце в это время находится в нижней кульминации с прямым восхождением на отличающимся от кульминации светила) можно заметить, что в разные даты в полночь вблизи небесного меридиана проходят, сменяя друг друга, разные созвездия. [Эти наблюдения в свое время привели к выводу об изменении прямого восхождения Солнца.]
Выберем любую звезду и зафиксируем ее положение на небе. На том же самом месте звезда появится через сутки, точнее через 23часа 56минут. Сутки, измеренные относительно далеких звезд, называются звездными (если быть совсем точными, звездные сутки - промежуток времени между двумя последовательными верхними кульминациями точки весеннего равноденствия). Куда же деваются еще 4 минуты? Дело в том, что вследствие движения Земли вокруг Солнца оно смещается для земного наблюдателя на фоне звезд на 1° за сутки. Чтобы «догнать» его, Земле и нужны эти 4 минуты. (рисунок слева)
Каждую последующую ночь звезды немного сдвигаются к западу, восходя на 4 минуты раньше. За год сдвинется на 24 ч, то есть вид звездного неба повториться. Вся небесная сфера за год сделает один оборот - результат отражения обращения Земли вокруг Солнца.

Итак, Земля делает один оборот вокруг своей оси за 23 часа 56 минут. 24 часа - средние солнечные сутки - время оборота Земли относительно центра Солнца.

III. Закрепление материала (10 мин)
1. Работа по ПКЗН (по ходу изложения нового материала)
а) нахождение небесного экватора, эклиптики, экваториальных координат, точек равноденствия и солнцестояния.
б)определение координат например звезд: Капелла (α Возничего), Денеб (α Лебедя) (Капелла - α=5 ч 17 м, δ=46 о; Денеб - α=20 ч 41 м, δ=45 о 17")
в) нахождение звезд по координатам: (α=14,2 ч, δ=20 о) - Арктур
г) найти, где находится Солнце сегодня, в каких созвездиях осенью. (сейчас четвертая неделя сентября - в Деве, начало сентября - во Льве, в ноябре пройдет Весы и Скорпион)
2. Дополнительно:
а) Звезда кульминирует в 14 ч 15 м. Когда ее следующая нижняя, верхняя кульминация? (через 11 ч 58 м и 23 ч 56 м, то есть в 2 ч 13 м и 14 ч 11 м).
б) ИСЗ пролетел по небу из начальной точки с координатами (α=18 ч 15 м, δ=36 о) в точку с координатами (α=22 ч 45 м, δ=36 о). Через какие созвездия пролетел ИСЗ.

IV. Итог урока
1. Вопросы:
а) Какова необходимость введения экваториальных координат?
б) Чем замечательны дни равноденствия, солнцестояния?
в) Под каким углом плоскость экватора Земли наклонена к плоскости эклиптики?
г) Можно ли рассматривать годовое движение Солнца по эклиптике как доказательство обращения Земли вокруг Солнца?

Домашние задание: § 4, вопросы задание для самоконтроля (стр. 22), стр. 30 (пп. 10-12).
(желательно раздать всем учащимся на год этот список работ с пояснениями).
Можно дать задание "88 созвездий " (по одному созвездию каждому ученику). Ответить на вопросы:

  1. Как называется это созвездие?
  2. В какое время года его лучше всего наблюдать на нашей (данной) широте?
  3. К какому типу созвездий оно относится: невосходящее, незаходящее, заходящее?
  4. Это созвездие северное, южное, экваториальное, зодиакальное?
  5. Назовите интересные объекты этого созвездия и укажите их на карте.
  6. Как называется самая яркая звезда созвездия? Каковы ее основные характеристики?
  7. Пользуясь подвижной картой звездного неба, определите экваториальные координаты наиболее ярких звезд созвездия.

Урок оформили члены кружка "Интернет-технологии" - Прытков Денис (10 кл) и Поздняк Виктор (10 кл), Изменен 23.09.2007 года

2. Оценки

Экваториальная система координат 460,7 кб
«Планетарий» 410,05 мб Ресурс позволяет установить на компьютер учителя или учащегося полную версию инновационного учебно-методического комплекса "Планетарий". "Планетарий" - подборка тематических статей - предназначены для использования учителями и учащимися на уроках физики, астрономии или естествознания в 10-11 классах. При установке комплекса рекомендуется использовать только английские буквы в именах папок.
Демонстрационные материалы 13,08 мб Ресурс представляет собой демонстрационные материалы инновационного учебно-методического комплекса "Планетарий".
Методика проведения урока
"Солнечные и лунные затмения"

Цель урока: формирование понятий о космических и небесных явлениях, связанных с обращением Луны вокруг Земли и видимым движением других космических тел.

Задачи обучения:

Общеобразовательные :

1) систематизация понятий о небесных явлениях: затмениях, прохождениях и покрытиях, наблюдающихся в результате взаимного перемещения и расположения небесных светил относительно земного наблюдателя и о космических явлениях – причинах вышеперечисленных небесных явлений;

2) подробное рассмотрение причин и характеристик соответствующих космических и небесных явлений:
- космического явления обращения Луны вокруг Земли и его следствиях - небесных явлениях: солнечных (полных, частных, кольцеобразных) и лунных (теневых и полутеневых) затмениях и о покрытиях звезд и планет Луной;
- космического явления обращения планет Солнечной системы вокруг Солнца и его следствиях – небесных явлениях прохождения Венеры и Меркурия по диску Солнца;
- космического явления обращения спутников планет вокруг планет-гигантов и его следствий - небесных явлений в системах планет-гигантов, аналогичных небесным явлениям в системах Земля-Луна и планеты - Солнце;
- изменения блеска затменно-переменных звезд.

Воспитательные : формирование научного мировоззрения в ходе знакомства с историей человеческого познания и объяснения повседневно наблюдаемых небесных явлений; борьба с религиозными предрассудками; эстетическое воспитание в ходе демонстрации цветных диапозитивов и фотографий, иллюстрирующих материал урока.

Развивающие : формирование умений: формирование умений выполнять упражнения на применение основных формул сферической астрономии при решении соответствующих расчетных задач и применять подвижную карту звездного неба, звездные атласы, справочники, Астрономический календарь для определения положения и условий видимости небесных светил и протекания небесных явлений.

Ученики должны знать :

Причины и основные характеристики небесных явлений, порожденных обращением Луны вокруг Земли и планет вокруг Солнца (солнечных и лунных затмений; покрытий звезд и планет Луной; прохождений Венеры и Меркурия по диску Солнца; явлений в системах планет-гигантов; изменения блеска затменно-переменных звезд) и общие сведения об их периодичности;
- основы классификации космических и небесных явлений и соответствующие геометрические схемы;
- о применении знаний, приобретаемых в результате исследования вышеперечисленных небесных явлений.
- понятия сферической астрономии: фаза затмения; конус тени (тень); конус полутени (полутень); орбита Луны; узел лунной орбиты; драконические год и месяц; сарос; период повторения сароса.
- астрономические величины: угол наклона плоскости лунной орбиты к эклиптике.

Ученики должны уметь :

Использовать обобщенный план для изучения космических и небесных явлений;
- использовать Астрономические календари, справочники и подвижную карту звездного неба для определения условий протекания вышеперечисленных небесных явлений.

^ Наглядные пособия и демонстрации :

Фрагменты слайд-фильма "Необыкновенные небесные явления" (о затмениях).
Кинофильмы и кинофрагменты:
"Полное солнечное затмение" ("Почему и как происходят затмения Солнца"); "Двойные звезды"; "Переменные звезды".
Фрагмент диафильма: "Видимое движение небесных светил".
Таблицы
: "Луна" и "Солнечные и лунные затмения"
Приборы и инструменты
: подвижные карты звездного неба (у каждого ученика); Астрономический календарь на данный год; теллурий; глобус; прибор для демонстрации причин солнечных и лунных затмений.

^ Задание на дом :

1) Изучить материала учебников:
- Б.А. Воронцов-Вельяминова : § 6(2); упражнение 6.
- Е.П. Левитана : § 12 (3, 4); вопросы-задания 1, 2, 7-9.
- А.В. Засова, Э.В. Кононовича : § 5; вопросы.

2) Выполнить задания из сборника задач Воронцова-Вельяминова Б.А. [28 ]: 115, 144.


  1. Выполнить задания из сборника олимпиадных задач В.Г. Сурдина [289 ]: 3.41.
План урока

Этапы урока

Содержание

Методы изложения

Время, мин

1

Проверка знаний и актуализация

Фронтальный опрос, беседа

5-7

2

Формирование понятий об основах классификации космических и небесных явлений

Лекция, беседа

5-7

3

Формирование понятий о небесных явлениях: солнечных и лунных затмениях; покрытиях звезд и планет Луной; прохождениях Венеры и Меркурия по диску Солнца; явлениях в системах планет-гигантов; изменениях блеска затменно-переменных звезд

Лекция

15-17

4

Решение задач

Работа у доски, самостоятельное решение задач в тетради

12-15

5

Обобщение пройденного материала, подведение итогов урока, домашнее задание

3

^ Методика изложения материала

В начале урока следует провести проверку знаний, приобретенных на прошлом и предыдущих уроках, актуализируя предназначенный к изучению материал вопросами и заданиями в ходе фронтального опроса. Часть учеников работает у доски, а часть выполняет письменные задания, решая задачи, связанные с применением подвижной карты звездного неба (аналогичные основным задачам упражнений 1-4). Дополнительными вопросами являются:

1. Какие небесные явления происходят в результате: вращения Земли вокруг своей оси; обращения Луны вокруг Земли; обращения Земли вокруг Солнца. Ответы учеников строятся на основе обобщенного плана для изучения космических и небесных явлений.

2. Что такое время? Какие единицы и способы измерения времени вы знаете?

3. Какова связь продолжительности отдельных космических и небесных явлений с единицами и способами измерения, счета и хранения времени и календарями?

4. Какие инструменты и способы измерения времени вы знаете? Дайте описание основных типов часов, кратко охарактеризуйте их принцип действия.

5. Какие типы календарей вы знаете? Сообщите их главные характеристики. Какой календарь мы используем в повседневной жизни? Насколько он точен? Каковы его положительные и отрицательные стороны?

6. Какие системы летоисчисления вам знакомы? Сообщите их главные характеристики. Какой системой летоисчисления мы пользуемся?

7. Как ориентироваться на местности по Солнцу? По Луне? По Полярной звезде?

8. Как определить географические координаты местности из астрономических наблюдений?

1. Сборник задач Г.П. Субботина [287 ], задания NN 76-78.
2. Сборник задач Е.П. Разбитной [244 ], задания NN 5-8 (I-III).
3. Страут Е.К. [276 ]: проверочная работа N 3 темы "Практические основы астрономии" (варианты 1-5, преобразованные учителем в программированные задания).

Первый этап урока посвящен продолжению формирования системы понятий о космических и небесных явлениях. Напомнив (обсудив с учениками) определения понятий "космические явления", "небесные явления" и связь между ними, знакомим школьников с простейшими геометрическими интерпретациями ряда небесных явлений.

На втором этапе урока излагается обширный материал о солнечных и лунных затмениях, покрытиях звезд и планет Луной, прохождениях Венеры и Меркурия по диску Солнца, изменению блеска затменно-переменных звезд и других небесных явлениях. Важную роль в формировании данных понятий играет элемент наглядности: все они должны быть проиллюстрированы с помощью геометрических схем и сопровождаться демонстрациями рисунков, фотографий, диапозитивов и т.д. Помимо теллурия, объяснить особенности движение компонентов системы "Земля – Луна" и причины затмений поможет самодельный прибор Н.Д. Гамаюнова [31 ].

^ Затмения, прохождения и покрытия небесных светил

В ходе затмений, покрытий и прохождений одно небесное тело частично или полностью перекрывает световой поток, исходящий от поверхности другого небесного тела вдоль прямой, проходящей через центры этих светил.

1) Если А - Земля, В - Луна, С - Солнце, то на Земле наблюдается солнечное затмение (рис. 38).

Солнечные затмения происходят в новолуние, когда тень Луны падает на Землю; лунные затмения происходят в полнолуние, когда Луна входит в тень Земли. Угловые размеры Солнца и Луны почти совпадают (31њ 31¢ £ d ¤ £ 32њ 36¢ ; 29њ 20¢ £ d ¦ £ 33њ 32¢), и при расположении центров Земли, Луны и Солнца на одной линии затмения Солнца будут полными (d ¤ £ d m) или кольцеобразными (d ¤ > d m).

Рис. 38. Схема полного солнечного затмения

Лунная тень перемещается по поверхности Земли со скоростью 500-1000 м/с с запада на восток, образуя полосу затмения шириной от 40 до 200 км и длиной несколько тысяч километров, по обе стороны от которой в широкой зоне лунной полутени наблюдается частное солнечное затмение, в котором диск Луны закрывает от наблюдателя лишь часть солнечного диска.

Максимальная продолжительность полного солнечного затмения не превышает 7 минут 31 секунды.

2) Если А - Луна, В - Земля, С - Солнце, то на Земле наблюдается лунное затмение (рис. 39).


^ Рис. 39. Схема полного лунного затмения

Диаметр земной тени на расстоянии лунной орбиты втрое превышает диаметр Луны и полные лунные затмения продолжаются до 1 часа 40 минут, наблюдаясь практически на всей территории ночного полушария Земли. Когда Луна скрывается в тени Земли близ ее края, лунное затмение будет частным; когда Луна скрывается в полутени Земли, затмение будет полутеневым (невидимым невооруженным глазом).

Если бы Луна вращалась вокруг Земли в плоскости эклиптики, то солнечные затмения происходили бы каждое новолуние, а лунные в каждое полнолуние - 29,53 суток. Но плоскость лунной орбиты имеет наклон: i = 5њ 09¢ к плоскости эклиптики и затмения могут происходить лишь тогда, когда Луна пересекает плоскость эклиптики вблизи своего полнолуния или новолуния (проходит один из узлов своей орбиты) (рис. 40).

Промежуток времени в 27,2122... сут., за который Луна возвращается к тому же узлу своей орбиты, называется драконическим месяцем .

Он короче сидерического периода Луны и поэтому каждые 27,2122 суток Луна пересекает эклиптику в 1,5њ западнее предыдущей: узлы лунной орбиты непрерывно перемещаются по эклиптике навстречу Солнцу (рис. 41).


^ Рис. 41. Схема наступления солнечных затмений

Промежуток времени, за который центр диска Солнца проходит через один и тот же узел лунной орбиты, называется драконическим годом . T d = 346,62 cуток.

Солнечные затмения периодически повторяются, их наступление зависит от трех периодов: сидерического лунного месяца, драконического месяца и драконического года.

Сарос - промежуток времени, включающий целое число сидерических месяцев, драконических месяцев и драконических лет, равный 18 годам 11,3 суткам (10,3 сут.). Все затмения периодически повторяются через сарос, но поскольку он не содержит целого числа суток, каждое затмение повторяется при несколько иных условиях: путь лунной тени по земной поверхности смещается на 120њ .

Располагая данными об обстоятельствах предшествовавших затмений и саросе, можно путем относительно несложных вычислений предсказывать солнечные и лунные затмения на любой промежуток времени.

В результате расчетов было установлено, что ежегодно может произойти не менее 2 и не более 5 солнечных и не более 3 лунных затмений. На протяжении сароса происходит 41-43 солнечных и 26-29 лунных затмений.

Наблюдения солнечных затмений представляют большой интерес для науки: часто для наблюдений полных затмений снаряжаются экспедиции ученых разных стран мира. Важнейшими задачами наблюдений являются: уточнение теорий движения Земли и Луны, всестороннее изучение атмосферы Солнца, структуры и физических характеристик солнечной короны.

Наблюдения лунных затмений позволяют уточнить характеристики движения Луны и Земли, исследовать некоторые свойства земной атмосферы.

В первой половине ХХI века на территории России будут наблюдаться лишь три полных и кольцеобразных солнечных затмения:

Таблица 7

В первом десятилетии ХХI века на территории России будут наблюдаться следующие полные лунные затмения:

Таблица 8


Дата

Районы видимости в РФ

9. 11. 2003 г.

Европейская часть, северо-запад Сибири

4. 05. 2004 г.

Европейская часть, запад, центр и юг Сибири

28. 10. 2004 г.

Европейская часть России

3. 03. 2007 г.

Европейская часть, запад и центр Сибири

28. 08. 2007 г.

Дальний Восток

21. 02. 2008 г.

Европейская часть России

21. 12. 2010 г.

Север Европейской части, север и восток Сибири

Затмения происходят в системах тесных двойных звезд, при условии:

3) Если А - земля, В и С - звезды, образующие двойную систему и вращающиеся вокруг общего центра тяжести в плоскости, параллельной к лучу зрения земного наблюдателя. Вследствие точечных угловых размеров светил затмения в системах звезд наблюдаются в виде периодических изменений блеска системы: звезда на небе периодически то становится ярче, то слегка "гаснет" (рис. 42).


Рис. 42. График изменения блеска затменно-переменной звезды b Персея
(если звезда А ярче звезды В, то наблюдается вторичный, слабый минимум блеска;
если звезда В ярче А, наблюдается основной минимум блеска. При А>В (по размерам)
наблюдается кольцеобразное затмение, при A £ В наблюдается полное затмение
в системе звезд А и В)

Типичный представитель этого класса переменных , изменяющих свой блеск звезд -Алголь, b Персея, с периодом изменения блеска от 3,5 m до 2,3 m за 68 часов 49 минут. В переводе с арабского Алголь - "дьявол" или "глаз дьявола": арабские астрономы открыли (но не смогли объяснить) ее переменность около 2000 лет назад.

В настоящее время известно более 4000 затменно-переменных звезд .

Наблюдения затменно-переменных звезд позволяют определить размеры, массу, характеристики орбит звезд и получить ряд сведений об их физической природе.

Покрытия небесных светил наблюдаются при условии, когда видимые угловые размеры одного светила значительно превосходят угловые размеры другого светила:

4) Если А - Земля, В - Луна, С - звезда или планета, то на Земле наблюдается покрытие Луной этой звезды или планеты: светило скрывается за восточным краем Луны, чтобы спустя некоторое время вынырнуть из-за ее западного края (рис. 43). Наблюдения покрытий Луной звезд и планет помогают уточнить теорию движения Земли и Луны, в последнее время эти наблюдения стали привлекаться для прямых измерений размеров звезд.

Покрытия происходят также в системах планет-гигантов:

5) Если А - Земля, В - планета-гигант, С - звезда.

Эти явления происходят довольно редко и позволяют уточнить характеристики орбит планет. В 1976 году при наблюдении покрытия Ураном звезды были открыты кольца планеты.

Прохождениями одного небесного светила по диску другого называются явления, при которых одно светило проецируется на диск другого, имеющего большие угловые размеры:

6) Если А - Земля, В - Меркурий или Венера, С - Солнце, то на Земле наблюдается прохождение Меркурия или Венеры по диску Солнца. Крохотный кружочек - диск планеты проползает по солнечному диску от восточного к западному его краю (рис. 44).

Прохождения происходят и в системах планет-гигантов и в системах затменно-переменных (двойных звезд).

Наблюдения прохождений позволяют уточнить характеристики движения космических тел. При наблюдениях прохождения Венеры по диску Солнца в 1761 году М. В. Ломоносов открыл атмосферу Венеры.

Прохождения Меркурия по диску Солнца происходят раз в 10,3; 13 и 7 лет, прохождения Венеры наблюдаются гораздо реже - раз в 121,5; 105,2 и 7 лет (циклами).

Ученики самостоятельно дополняют табл. 6 сведениями об изученных на уроке космических и небесных явлениях. На это отводится до 5 минут, затем учитель проверяет и корректирует работу школьников.

Табл. 6


Космические явления

Небесные явления, возникающие вследствие данных космических явлений

Вращение Луны вокруг Земли

Отображения истинного обращения Луны вокруг Земли:
1) видимое движение Луны по небесной сфере;
2) смена фаз Луны;
3) солнечные и лунные затмения;
4) покрытия звезд и планет Луной

Обращение планет Солнечной системы вокруг Солнца

1. Покрытия звезд дисками планет (планетных тел).
2. Явления в системе Солнце – внутренняя планета:
- прохождение Меркурия и Венеры по диску Солнца.
3. Явления в системах планет и их спутников:
- изменение положения спутника относительно диска планеты;
- прохождения спутников по диску планет;
- затмения спутников диском планет

Вращение компонент двойных звезд вокруг центра систем

Изменение блеска системы вследствие затмения (или покрытия) одной из звезд вторым компонентом системы

Изученный материал закрепляется в ходе решения задач. Желательно для повторения и обобщения пройденного материала предлагать ученикам комплексные задачи, условия и способы решения которых требуют применения всех или значительной части знаний, приобретенных при изучении раздела "Основы астрометрии":

Упражнение 5 :

1. Задачи, предложенные Н.Е. Шатовской [313 ]:

Какая из последовательностей лунных фаз соответствует действительности? Рис.45



Рис. 45

2. Какой из рисунков может быть иллюстрацией к отрывку из стихотворения В.Я. Брюсова: Рис.46



Рис. 46

"… Снова ночи обнаженные
Заглядятся в воды сонные,
Чтоб зардеться на заре.
Тучка легкая привесится
К золотому рогу месяца,
Будет таять в серебре…"

2. Может ли произойти покрытие Луной звезды Альтаир, a Орла?

3. Нарисуйте, как выглядело звездное небо в окрестностях Солнца в момент полного солнечного затмения 31 июля 1981 года, если экваториальные координаты планет: Меркурия: a = 7 h 53 m ; d = + 21њ 42¢ ; Венеры: a = 10 h 39 m ; d = + 9њ 55¢ ; Марса: a = 6 h 37 m ; d = +23њ 27¢ .

4. В какое время нужно выходить на улицу для наблюдений полного лунного затмения 9 января 2001 года, если начало частных фаз теневого затмения 18 h 42 m , а начало полного теневого затмения 19 h 50 m по Всемирному времени. Можно ли что-то заметить невооруженным взглядом в 20 h 50 m по московскому времени?

5. Какую картину будет видеть космонавт на Луне, когда на Земле наблюдается лунное затмение? Солнечное затмение?

6. Изготовление модели теллурия.

Наглядное пособие - прибор теллурий позволяет демонстрировать причины ряда небесных явлений, связанных с вращением Земли вокруг оси, обращением Луны вокруг Земли и обращением Земли вокруг Солнца:

1. Смену дня и ночи.
2. Зависимость освещенности северного и южного полушарий Земли от угла наклона земной оси к плоскости эклиптики.
3. Смену времен года.
4. Солнечные и лунные затмения.

Эти прибор выпускается для школьных кабинетов физики и географии, используется на уроках природоведения и "Ознакомления с окружающим миром". К сожалению, в настоящее время он есть уже не в каждой школе, а покупка нового прибора часто затруднительна. Однако вы можете сделать для своих и школьных нужд самодельный теллурий. Для этого вам потребуется: карманный фонарик, работающий на круглых батарейках, немного тонкой и прочной проволоки, разноцветный пластилин, акварельные краски и бумага.

Снимите с фонарика футляр со стеклом и отражателем, а лампочку покрасьте желтой краской - она будет изображать Солнце. Разрежьте проволоку на две части длиной в 10-15 см и 2-3 см, согните её так, как показано на рис. 47. Из пластилина слепите шарики размерами 2 см и 5 мм - модели Земли и Луны. Соберите установку так, как показано на рис. 47. "Луна" и "Земля" должны свободно вращаться вокруг своей оси и вокруг Солнца. Расчерченную на 12 ровных частей - "месяцев в году" полоску бумаги наклейте вокруг корпуса фонарика. Напишите на ней названия месяцев.



Рис. 47. Модель теллурия