История возникновения цифр. Исследовательская работа. Как возникли арабские цифры

История возникновения чисел очень глубокая и давняя. Сама жизнь привела людей к тому, что стало просто необходимо использовать символы для написания чисел.

Представьте, ведь давным-давно во времена, когда у людей не было цифр и они не умели считать как мы сейчас, у них все-равно возникало огромное количество поводов для счета. Правда, в те времена им не нужно было применять огромные числа. И самый простой вариант счета подсказала природа. Люди использовали пальцы рук, а при больших числах и ног, чтобы посчитать, например, количество голов скота в стаде. Если уж своих пальцев не хватало, звали приятеля, чтобы уже считать на его руках и ногах. Достаточно неудобно было, а вдруг никого рядом не окажется когда срочно нужно посчитать большое количество чего-нибудь?

История чисел

Потом кто-то придумал делать глиняные кружочки для подсчета. Например, повел пастух с утра большое стадо на пастбище. Подсчитал всех животных с помощью кружков - сколько кружков, столько животных. Вечером привел их домой, опять смотрит, чтобы каждому животному соответствовал один кружок. Ну и подобных вариантов существовало множество, то есть пользовались подручными средствами.

Первое доказательство использования древними людьми счета - это волчья кость, на которой 30 тысяч лет назад сделали зарубки. Притом они набиты не как-нибудь, а сгруппированы по пять.

Древность.

В Древности у разных народов существовали свои способы счета. Например, майа использовали только три обозначения: точку, линию и эллипс и записывали ими любые цифры.

В Древнем Египте около 5000-4000 лет до н.э. использовали такую запись чисел: единица обозначалась палочкой, сотня - пальмовым листом, а сто тысяч - лягушкой (в дельте Нила было очень много лягушек, вот у людей и возникла такая ассоциация: сто тысяч - очень много, как лягушек в Ниле).

А вот наши предки-славяне использовали самую сложную запись чисел. Они их записывали буквами, над которыми ставили специальный значок «титло», чтобы отличить, где написали буквы, а где цифры, и значков у них было аж 27.

А, например, папуасские племена имели только две цифры, один и два, и называли их «урапун» и «окоза» соответственно. А дальнейшие числа называли просто используя эти два. Например три у них - «окоза-урапун», а четыре - «окоза-окоза». Видимо, считать им особо нечего, поэтому больших чисел у них нет. А все, что больше шести-семи они называют «много». А сколько там «много» уже неизвестно!

Клинопись.

Но человечество развивалось, хозяйство увеличивалось, усложнялись и подсчеты. Появилась потребность в записи чисел. Ведь на память невозможно упомнить, сколько в стаде голов скота, сколько мешков пшеницы у тебя лежит, а сколько потратили, сколько посадили и какой собрали урожай. И вот примерно в V веке до нашей эры появились первые цифры.

Говорят, что первые числа изобрели шумеры, народ, живший на территории Южного Междуречья Тигра и Евфрата, современного Ирака примерно в IV-III тысячелетии до н.э. Шумеры, кстати, очень интересный народ. Огромное количество изобретений, известных сейчас, были впервые использованы ими. Например, обожженный кирпич, колесо.

Шумеры изобрели и так называемое клинописное письмо или клинопись. На глиняных табличках рисовались различные символы в виде клиньев. Цивилизация шумеров была очень развита для тех времен. В их города жили торговцы, ремесленники. Для счета применялись сначала глиняные фишки различной формы. Со временем на них стали делать пометки, которые обозначали количество и вид того, что считали. Например, две козы. Но два мешка писали совершенно по-другому. То есть они описывали количество конкретных объектов и не выделяли отдельно цифру.

После шумеров на этих землях обосновались вавилоняне. Они переняли систему счисления шумеров. Египтяне тоже пользовались похожей системой счета.

Но все-таки подобный способ записи чисел не идеален и с развитием человечества развивалась и запись чисел.

Римские цифры появились 500 лет до н.э. Римская система счисления была очень распространена в Европе и считалась на то время, пока не придумали арабские цифры, идеальной.

I- 1

V-5

X-10

L-50

C-100

D-500

M-1000

С небольшими числами она вполне удобна, но для записи больших чисел очень сложна. Еще один недостаток: невозможно письменно делать вычисления. Их можно сделать только в уме, что, естественно, может породить большое количество ошибок.

Сейчас римские цифры тоже применяют, например, в записи века, порядкового номера монарха и т.п.

В V веке в Индии появилась система записи, которую мы знаем как арабские цифры и активно используем сейчас. Это был набор из 9 цифр от 1 до 9. Каждая цифра записывалась так, чтобы ей соответствовало количество углов. Например, в цифре 1 - один угол, в цифре 2 - два угла, в цифре 3 - три. И так до 9. Нуля еще не существовало, он появился позже. Вместо него просто оставляли пустое место.

Далее произошло интересное: арабы переняли индийскую систему счисления и начали вовсю применять ее. В те времена мусульманский мир был очень развит, он имел очень тесные связи и с азиатской и европейской культурой и брал от них все самое совершенное и передовое на то время.

Математик Мухаммед Аль-Хорезми в IX веке составил руководство об индийской нумерации. Оно в XII веке попало в Европу и эта система счисления получило очень широкое распространение. Интересно, но именно из-за того, что к нам эти цифры пришли от арабов, мы их называем арабскими, а не индийскими.

Кстати, и само слово «цифра» - арабского происхождения. Арабы перевели индийское «сунья» и получилось «цифр».

Арабская система счисления называется позиционной. Это значит, что значение числа зависит от положения его в записи. То есть в числе 18 цифра 8 обозначает 8 единиц, а в числе 87 та же восьмерка обозначает 8 десятков. Позиционные системы наиболее совершенны. Но они произошли от непозиционных систем (которые, в принципе, существуют и сейчас) в результате развития человечества, его знаний и потребностей.

Интересно то, что современные арабские цифры сильно отличаются от тех, которые используем мы:

Вот такая история чисел . Сейчас тоже используются разные числа. Некоторые страны, как например, арабские страны и Китай, пользуются своими особенными цифрами. Но, все-таки, наибольшее распространение получили арабские цифры, которые используют и понимают во всем мире.

Вам также может быть интересно.

Я. Линский

Древние народы тех времен, когда изобретали цифры, не оставили нам книг, по которым мы могли бы установить, какова была наука в те далекие времена. Но даже из того, что было в те времена записано или изображено, не все дошло до нас и не все разгадано в тех надписях, которые сохранились до нашего времени.
Мы изучаем древние сказания и предания. Некоторые из этих преданий впоследствии были записаны первыми древними историками. Так, историк Плиний записал, будто римский царь Нума велел воздвигнуть статую двуликому Янусу так, чтобы пальцы Януса указывали 365 – число дней года. Двуликий Янус был римский бог. Его именем был назван первый месяц года январь. Изображали Януса с двумя лицами, которые смотрели в противоположные стороны – в прошлое и в будущее. Но все же римляне считали, что у Януса, как у любого бога или человека, только 20 пальцев на руках и ногах. И такая запись древнего историка говорит нам, что по пальцам умели считать не только до двадцати.
Отсчитывать большие числа пальцами умели не только римляне, но и другие народы.
О происхождении цифр мы узнаем и по языку разных народов. Так мы узнали, что понятие "два" в Китае обозначают словом "уши", а в Тибете – словом "крылья". В Квинслэнде, в Австралии, туземцы вместо "четыре" говорили "бурла-бурла", что означает "два-два". Вместо слова "считать" мы иногда употребляем иностранное слово "калькулировать". Происходит это слово от римского слова "калькуль", что означает камешек. Таким образом само слово подтверждает, что древние римляне вели счёт камушками.
Интересно наблюдать, как считают первобытные племена. По таким наблюдениям установлено, что некоторые племена умели считать только до трех, а после трех говорили "много".
Племя янкусов на Амазонке понятие 3 передавало словом "поеттаррарориккоароак", а чтобы сосчитать шесть, им нужно два раза произнести это "коротенькое" слово. Представляем себе, сколько раз им надо произнести "поеттаррарориккоароак", чтобы досчитать до ста.
Некоторые племена индейцев считали так: один человек отсчитывал по пальцам до десяти, потом звали другого человека, который загибал один палец для первого десятка, второй палец, когда первый человек второй раз загнул свои 10 пальцев. Так продолжался счет до сотни. Сотни уже считал по своим пальцам третий индеец, тысячи – четвертый и так далее. Зулусы устраивались проще: отсчитывали по пальцам десять и хлопали в ладоши один раз, отсчитывали второй десяток и хлопали два раза. Семь хлопков и восемь растопыренных пальцев обозначали 78. Проще-то это проще, но и сбиться со счета легче. Не всегда запомнишь, сколько раз отхлопал.

СЧЕТ ПО-КИТАЙСКИ

По этому рисунку видно, как китайцы досчитывали на пальцах до десятков миллионов.

Огромного искусства в счете на пальцах достигли китайцы. Китайцы ухитрялись на одном пальце отсчитывать девять, на следующем пальце они отсчитывали десятки, на третьем – сотни, и таким образом на восьми пальцах они ухитрялись считать до 99 999 999.
Большие пальцы служили китайцам для того, чтобы на остальных своих длинных, тонких и гибких пальцах производить этот сложный счет. Китайские купцы торговались молча на глазах у всех, но никто из окружающих не мог узнать, за какую цену товар куплен. Купцы брали друг друга за руку под полой своих длинных халатов и показывали цену прикосновением к пальцам. Многие исследователи утверждают, что обычай хлопать друг друга по рукам под полой кафтана при продаже товара перешел к русским купцам из Китая.
– Ну, по рукам?
– По рукам! – говорили русские – и дело считалось решенным. Так говорим мы теперь при случае. Хлопать по рукам русские купцы научились, но считать по пальцам до таких больших чисел не умели.
С китайцами больше всех сталкивались сибирские звероловы. Но короткие пальцы на широких руках сибирских охотников давали им возможность нащупать толстым пальцам только два сустава на остальных своих пальцах. Таким образом сибиряки отсчитывали на правой руке до восьми и загибали один палец левой руки, а когда загнут все пять пальцев левой руки, значит отсчитали до сорока. Этим и объясняют, почему сорок стало единицей счета у русских. В пуде считали 40 фунтов. В старых описаниях Москвы говорится, что церквей было выстроено "сорок сороков". В древних летописях сказано, что дань (ясак) уплачивалась "сороками соболей".
Так пальцы на руках, а у некоторых народов и пальцы ног, были одной из первых широко распространенных счетных машин. Приспособлением для счета у многих народов служили камешки, зерна кукурузы, раковины и т. п. Жители островов в Южном океане счет вели кокосовыми орехами. Отсчитывали десять орехов и откладывали маленький кусочек ореха. Этими кусочками обозначали десятки. Насчитают десять маленьких кусочков и отложат кусок побольше, он обозначал сотни и т. д.

Но уже давно были и специальные приспособления для счета. Самым распространенным приспособлением для счета у народов, которые уже достигли известной степени культуры, был абак.


Песочный абак. В первой строке греческими знаками написано число 2 014 103, во второй – римскими – 350 627, в третьей – арабскими – 7 013 094.

До сих пор не удалось точно установить, когда абак появился впервые. Некоторые ученые говорят, что слово "абак" произошло от слова, которое у семитических народов означает пыль, прах, песок. Другие ученые производят слово "абак" от греческого слова "доска, стол". И, действительно, судя по описаниям, существовали различные абаки. Некоторые абаки состояли ид доски, покрытой цветным песком и разделенной на столбцы вертикальными полосами. На таком абаке можно было записывать числа и стирать написанное, как на грифельной доске.
Другой вид абака состоял из простой доски, разделенной на столбцы. Первый столбец обозначал единицы, второй – десятки, третий – сотни и т. д. Древний историк Геродот писал, что египтяне считают камешками, ведя рукой справа налево, а эллины (греки) водили рукой слева направо.

Абак с камешками. У греков это расположение камешков обозначало 2 130 210, у египтян – 120 312.

Один и тот же камешек можно положить в первый столбец – тогда он обозначает единицу, и в шестой столбец – тогда он обозначает сотню тысяч. У греков было изречение, которое приписывают древнему мудрецу Солону.

Абак с колышками.

Оно говорит, что человек, который дружит с тиранами, подобен камешку при вычислении, значение его бывает иной раз большое, иной – малое.
Постепенно абак совершенствовался. В 1846 году при раскопках на острове Саламине был найден большой мраморный абак. Этот абак был длиной в 160 и шириной в 70 сантиметров. В абаке этом были отдельные столбцы для счета целых чисел и отдельные для дробей.

Абак с марками, дающими число 5 507 020.

Были абаки с колышками, на которые надевались кружочки. Такой абак не найден, но, по описанию древних историков, мы его можем себе представить.
Римляне делали абаки с прорезями, в которых двигались пуговки. Такой абак похож на китайский, который назывался "суанпан". Китайцы делали свой абак из рамки, на которой были натянуты нитки с пуговками. Наши счеты, вероятнее всего, заимствованы у китайцев.
Постепенно вместо камешков, пуговок и гладких жетонов на абак стали класть марки, на которых были написаны цифры.

КАК ИЗМЕНИЛИСЬ ЦИФРЫ


Изображение римских цифр связано со счетом по пальцам.

Какие же цифры существовали у древних народов?
Нам известно, что китайцы знали цифры еще за 4500 лет до наших дней. Эти цифры состояли из горизонтальных и вертикальных палочек, а десять китайцы изображали кружочком, вроде нашего нуля. Но китайцы жили обособленно и можно утверждать, что их цифры не были переняты другими народами.


Арабские цифры, составленные из отдельных палочек.

У халдеев, которые жили по рекам Тигру и Евфрату, цифры были похожи на клинья. Их выдавливали на глиняных плитках.
У греков, евреев, славян цифрами служили буквы, расположенные в алфавитном порядке.
У римлян были уже цифры. Цифр у них было всего семь. Нужные им числа римляне изображали путем комбинации этих семи цифр. При этом они пользовались и сложением и вычитанием. Например "XI" у римлян обозначало "11", а если палочка стояла слева – "IX", читали "9", т. е. цифра "10" уменьшалась на единицу.
Самое изображение римских цифр, бесспорно, связано со счетом по пальцам.
Родина наших цифр – Индия. Некоторые исследователи пытаются доказать, что изображение наших цифр произошло от расположения черточек. Одной чертой изображали единицу, в следующих цифрах было столько черточек, сколько в этих цифрах содержалось единиц.
По мнению этих исследователей, постепенно для ускорения письма из этих отдельных черточек вырисовывались наши современные цифры. Однако эти предположения не имеют никаких доказательств.


Так можно начертить все цифры по одной фигуре.

Интересно, что происхождение цифр занимало и Пушкина. В его дневнике мы находим такую запись:
"Форма цифр арабских составлена из следующей фигуры: АД = 1
ЕАВДС = 2
АВЕСД = 3
АВД + АЕ = 4
и проч. римские цифры составлены по тому же образцу".


Изменения арабских цифр за семнадцать веков до 14 века нашей эры.

До нас дошли изображения цифр, которые употреблялись в разное время индусами и арабами.
Как видите, наши цифры изменялись, и только в 14 веке нашей эры они стали такими, какими мы их знаем сегодня. Наши цифры носят название арабских. С этими цифрами, заимствованными у индусов, большинство европейских и азиатских народов познакомилось через арабов, которые вели торговлю с этими народами.

Мы не можем точно установить, как произошли наши цифры. Точно не знаем мы, почему ноль стали изображать кружком. Возможно, в древности на абак клали кружки и, когда стали считать на бумаге, пустой кружок обратился в кружок, нарисованный на бумаге – ноль (0). А некоторые ученые предполагают, что кружочек ноля разросся и округлился из точки, которую раньше индусы ставили вместо ноля. В любом случае, изобретение ноля было очень важно для развития счета.

Возникновение чисел в нашей жизни не случайность. Невозможно представить себе общение без использования чисел. История чисел увлекательна и загадочна. Человечеству удалось установить целый ряд законов и закономерностей мира чисел, разгадать кое-какие тайны и использовать свои открытия в повседневной жизни. Без замечательной науки о числах – математики – немыслимо сегодня ни прошлое, ни будущее. А сколько ещё неразгаданного!

Древние люди не умели считать. Да и считать им было нечего, потому что предметов, которыми они пользовались – орудий труда, – было совсем немного: один топор, одно копье Постепенно количество вещей увеличивалось, обмен ими усложнялся и возникала потребность в счете. Издавна числа казались людям чем-то таинственным. Любой предмет можно было увидеть и потрогать. Число потрогать нельзя, и вместе с тем числа реально существуют, поскольку все предметы можно посчитать. Эта странность заставила людей приписывать числам сверхъестественные свойства

В наш скоростной быстролётный век – век большого изобилия информации, различных печатных изданий и виртуального мира трудно чем - либо удивить людей. Написать, создать что-либо, да так, чтобы интересно было читать! Итак

С самого раннего детства мы знакомимся с числами. А какие же бывают числа? На этот вопрос я попыталась ответить в своей работе. Моя работа можно - это мини-пособие для ознакомления с таким интересным понятием как «Числа». Возможно, не все подробно, но в своей работе я старалась затронуть все аспекты, связанные с выбранной темой. Этой работой могут воспользоваться те, кто хочет знать о математике больше, чем рядовой школьник.

История развития числа

На первых этапах существования человеческого общества числа служили для примитивного счета предметов, дней, шагов. В первобытном обществе человек нуждался лишь в нескольких первых числа. С развитием цивилизации ему потребовалось изобретать все больше числа, этот процесс продолжался на протяженности многих столетий и требовал напряженного интеллектуального труда. При обмене продуктами появилась необходимость сравнивать числа, возникли понятия больше, меньше, равно. На этом же этапе люди стали складывать числа, затем научились вычитать, делить, умножать. При делении двух натуральных чисел появились дроби, при вычитании – отрицательные числа.

Необходимость выполнять арифметические действия привела к понятию рациональных чисел. В IV в. до н. э. греческие математики открыли несоизмеримые отрезки, длины которых не выражались ни целым, ни дробным числом (например, длина диагонали квадрата со стороной, равной 1). Потребовалась не одна сотня лет, чтобы математики смогли выработать способ записи таких чисел в виде бесконечной непериодической десятичной дроби. Так появились иррациональные числа, которые вместе с рациональными назвали действительными числами.

Но затем выяснилось, что во множестве действительных чисел не имеют решения простейшие квадратные уравнения, например, х2 + 1 = 0. Математики пришли к необходимости расширить понятия числа, чтобы в новом множестве можно было всегда извлечь квадратный корень. Новое множество назвали множеством комплексных чисел, введя понятие мнимой единицы: i2 = – 1.

Выражение вида а + вi назвали комплексным числом. Долгое время многие ученые не признавали их за числа. Только после того, как нашли возможность представить мнимое число геометрически, так называемые мнимые числа получили свое место во множестве чисел.

N – натуральные числа.

Q – рациональные числа.

R – действительные числа.

Комплексными называются числа вида а + вi, где а и в – действительные числа, i – мнимая единица: i2 = – 1. а называется действительной частью, вi – мнимой частью комплексного числа.

Определение. Два комплексных числа называются равными, если равны их действительные части и коэффициенты при мнимых частях, т. е. а + вi = с + di a = c, b = d.

Для комплексных чисел не существует соотношений «больше», «меньше».

Учёные математики, которые внесли

Вклад в развитие теории чисел

Мы живем в мире больших чисел

Задумывались ли вы когда-нибудь о том, сколько километров проходит человек за свою жизнь, сколько товаров производится и приходит в негодность ежечасно в пределах города, страны? Во сколько раз скорость пассажирского реактивного самолета превосходит скорость тренированного спортсмена-пешехода? Ответы на эти и тысячи подобных вопросов выражаются числами, занимающими зачастую по числу своих десятичных разрядов целую строку и даже больше.

Для сокращения записи больших чисел давно используется система величин, в которой каждая из последующих в тысячу раз больше предыдущей:

1000 единиц – просто тысяча (1000 или 1 тыс.)

1000 тысяч – 1 миллион

1000 миллионов – 1 биллион (или 1 миллиард)

1000 биллионов – 1 триллион

1000 триллионов – 1 квадриллион

1000 квадриллионов – 1 квинтиллион

1000 квинтиллионов – 1 секстиллион

1000 секстиллионов – 1 септиллион

1000 нониллионов – 1 дециллион и т. д.

Таким образом, 1 дециллион запишется в десятичной системе единицей с 3 * 11= 33 нулями. 1. 000. 000. 000. 000. 000. 000. 000. 000. 000. 000. 000.

«Напрасно думают, что ноль играет маленькую роль»

Самуил Яковлевич Маршак

Степень числа – произведение его самого на себя требуемое число раз, которое называется показателем степени (а само число – ее основанием). Например, 3 * 3= 32 (здесь 3 – основание, 2- показатель степени), 2 * 2 * 2= 23, 10 * 10= 102=100, 105= 10 * 10 * 10 * 10 * 10= 100000.

Заметьте, что число нулей степени 10 всегда равно ее показателю:

101=10, 102 =100, 103 =1000 и т. д.

И еще одно: математики во всем мире давно приняли, что любое число в нулевой степени равно единице (а0 =1). При записи больших чисел часто используют степень числа 10.

Единица – 100=1

Тысяча – 103= 1000

Миллион – 106= 1000 000

Биллион – 109= 1000 000 000

Триллион – 1012=1000 000 000 000

Квадриллион – 1015 =1000 000 000 000 000

Квинтиллион – 1018 =1000 000 000 000 000 000

Секстиллион – 1021 = 1000 000 000 000 000 000 000

Септиллион – 1024 = 1000 000 000 000 000 000 000 000

Октиллион - 1027 = 1000 000 000 000 000 000 000 000 000

Теперь приведем несколько интересных сведений:

Радиус Земли – 6400 км.

Длина Земного экватора – около 40 тыс. км.

Площадь Земного шара 510 млн. км.

Среднее расстояние от Земли до Солнца – 150 млн. км.

Диаметр нашей Галактики – 85 тыс. световых лет.

С начала нашей эры прошло немногим более миллиарда секунд.

Число Шахерезады

Существуют числа, носящие имена великих математиков: число Архимеда - , Неперово число – основание натуральных логарифмов е=2, 718281 [Непер Джон (150-1617), шотландский математик, изобретатель логарифмов].

Число, о котором пойдет речь, не менее популярно. Это 1001. Его иногда называют числом Шехерезады, известно каждому, кто читал сказки «Тысяча и одна ночь». Число 1001 обладает рядом интересных свойств:

1. Это самое маленькое натуральное четырехзначное число, которое можно представить в виде суммы кубов двух натуральных чисел: 1001=103+13.

2. Состоит из 77 «злополучных чертовых дюжин». (1001=77*13), из 91 одиннадцатки или 143 семерок (вспомним, что число «7» считалось магическим числом); далее, если будем считать, что год равен 52 неделям, то 1001=143*7=(104+26+13)*7=2 года + ½ года+ ¼ года

3. На свойствах числа 1001 базируется метод определения делимости числа на 7, на 11 и на 13.

Рассмотрим этот метод на примерах:

Делится ли на 7 число 348285?

348285=348*1000+285=348*1000+348-348+285=348*1001-(348-285)

Так как 1001 делится на 7, то чтобы 348285 делилось на 7, достаточно, чтобы на 7 делилась разность 348-285. Так как 348-285=63, то 348285 делится на 7.

Таким образом, чтобы узнать, делится ли число на 7 (на 11 или 13), необходимо от этого числа без последних трех цифр отнять число из трех последних цифр; если эта разность делится на 7 (11 или 13), то и заданное число также делится на 7 (11 или 13).

Задумайтесь, может и вы найдёте сказочное число. Внесите свой вклад в царицу наук - МАТЕМАТИКУ!!!

Взаимно- обратные числа

Обратное число́ (обратное значение, обратная величина) - это число, на которое надо умножить данное число, чтобы получить единицу. Два таких числа называются взаимно обратными.

Примеры: 5 и 1/5, −6/7 и −7/6, π и 1 / π

Для всякого числа а, не равного нулю, существует обратное 1/a.

На земном шаре обитают птицы – безошибочные составители прогноза погоды на лето. Название этих птиц зашифровано примерами, записанными на доске. Последовательно решив примеры и заменив ответы буквами, вы прочтёте название птиц – метеорологов.

1. 17/8 5/6 6/5;

2. 3,4 7/3 3/7;

3. 11/12 5,6 12/11;

4. 2,5 0,4 3;

5. 2/3 0,1 3/2;

6. 41/2 1/2 2;

8. 11/12 31/3 12/11.

17/8 31/3 0,1 3,4 3 41/2 5,6 1

ф о и л м н а г

Простые числа

«Простые числа остаются всегда готовыми ускользнуть от исследования»

Если записать натуральные числа в ряд, и в тех местах, где стоят простые числа, зажечь фонарики, то не нашлось в этом ряду места, где была бы сплошная темнота. Фонарики расположились бы очень причудливо. Между ними есть только одно число - четное, это 2, а остальные нечетные. 2 и 3 последовательные натуральные числа, наименьшие простые -такая пара единственная, где одно число четное, а другое нечетное.

1, 2, 3,4 ,5 ,6, 7,8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Два последовательных нечетных числа, каждое из которых является простым – называются числами – близнецами.

Первые простые числа-близнецы:

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61),

(71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193),

(197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349),

(419, 421), (431, 433), (461, 463), (521, 523), (569, 571), (599, 601), (617, 619),

(641, 643), (659, 661), (809, 811), (821, 823), (827, 829), (857, 859), (881, 883)

Греческий ученый Евклид в своей книге «Начала» утверждал следующее: «Самого большого числа не существует». До сих пор неизвестно, есть ли самые большие числа-близнецы. И до сих пор нет ответа на вопрос: существует ли бесконечно много пар простых чисел-близнецов.

Первым глубокие исследования о том, как разбросаны простые числа среди натуральных, получил русский математик Пафнутий Львович Чебышев. Но до сих пор математики не знают формулы, с помощью которой можно получить простые числа одно за другим, нет даже формулы, дающей только простые числа.

Над тем, как составить список простых чисел, задумался живущей в 3 веке до нашей эры александрийский ученый Эратосфен. Его имя вошло в науку в связи с методом отыскания простых чисел. В древности писали на восковых табличках острой палочкой-стилем, поэтому Эратосфен «выкалывал» составные числа острым концом стиля. После выкалывания всех составных чисел таблица напоминала решето. Отсюда и название «решето Эратосфена». Древнегреческих ученых заинтересовало: сколько может быть всех простых чисел в натуральном ряду.

В 1750 году Леонард Эймер установил, что число 231 – 1 является простым. Оно оставалось самым большим из известных простых чисел более ста лет. В 1876 году французский математик Лукас установил, что огромное число

2127 – 1 = 170. 141. 183. 460. 469. 231. 731. 678. 303. 715. 884. 105. 727 также простое. Оно содержит 39 цифр. Для его вычисления были использованы механические настольные счетные машины. В 1957 году было найдено следующее простое число: 23217- 1. А простое число 244497-1 состоит из 13000 цифр.

Рациональные числа

Рациональное число (лат. ratio - отношение, деление, дробь) - число, представляемое обыкновенной дробью, где m - целое число, а n - натуральное число. При этом число m называется числителем, а число n - знаменателем дроби. Такую дробь следует интуитивно понимать, как результат деления m на n, даже если нацело разделить не удаётся. В реальной жизни можно использовать рациональные числа для счёта частей некоторых целых, но делимых объектов, например, тортов или других продуктов, разрезаемых на несколько частей перед употреблением, или для грубой оценки пространственных отношений протяжённых объектов.

Совершенные числа

Совершенное число́ (др. греч. ἀριθμὸς τέλειος) - натуральное число, равное сумме всех своих собственных делителей (т. е. всех положительных делителей, отличных от самого́ числа).

Первое совершенное число - 6 (1 + 2 + 3 = 6), следующее - 28 (1 + 2 + 4 + 7 + 14 = 28). По мере того как натуральные числа возрастают, совершенные числа встречаются всё реже. Третье совершенное число - 496, четвёртое - 8128, пятое - 33 550 336, шестое - 8 589 869 056 (последовательность A000396 в OEIS).

«Перестаньте отыскивать интересные числа!

Оставьте для интереса хотя бы одно неинтересное число!»

Из письма читателя Мартину Гарднеру

Среди всех интересных натуральных чисел, издавна изучаемых математиками, особое место занимают совершенные и близко связанные с ними дружественные числа.

Совершенным называется число, равное сумме всех своих делителей (включая 1, но исключая само число). Наименьшее из совершенных чисел 6 равно сумме трех своих делителей 1, 2 и 3. Следующее совершенное число 28=1+2+4+7+14. Ранние комментаторы Ветхого завета, пишет в своей книге «Математические новеллы» Мартин Гарднер, усматривали в совершенстве чисел 6 и 28 особый смысл. Разве не за 6 дней был сотворен мир, восклицали они, и разве Луна обновляется не за 28 суток?

Первым крупным достижением теории совершенных чисел была теорема Евклида о том, что число 2n-1(2n-1) - четное и совершенное, если число 2n-1 - простое 1. Лишь две тысячи лет спустя Эйлер доказал, что формула Евклида содержит все четные совершенные числа. Поскольку не известно ни одного нечетного совершенного числа (у читателей есть шанс найти его и прославить свое имя), то обычно, говоря о совершенных числах, имеют в виду четное совершенное число.

Приглядевшись к формуле Евклида, мы увидим связь совершенных чисел с членами геометрической прогрессии 1, 2, 4, 8, 16, Эту связь лучше проследить на примере древней легенды, согласно которой Раджа обещал изобретателю шахмат любую награду. Изобретатель попросил положить на первую клетку шахматной доски одно зерно пшеницы, на вторую клетку - два зерна, на третью - четыре, на четвертую - восемь и так далее. На последнюю, 64-ю клетку, должно быть насыпано 263 зерен, а всего на шахматной доске окажется «кучка» из 264-1 зерен пшеницы. Это больше, чем собрано во всех урожаях за историю человечества.

Если на каждой клетке шахматной доски мы напишем, сколько зерен пшеницы причиталось бы за нее изобретателю шахмат, а затем снимем с каждой клетки по одному зерну, то число оставшихся зерен будет точно соответствовать выражению, стоящему в скобках в формуле Евклида. Если это число простое, то, умножив его на число зерен на предыдущей клетке (то есть на 2n-1), мы получим совершенное число! Простые числа вида 2n-1 называются числами Мерсенна в честь французского математика XVII века. На шахматной доске со снятыми по одному зерну с каждой клетки есть девять чисел Мерсенна, соответствующих девяти простым числам, меньших 64, а именно: 2, 3, 5, 7, 13, 17, 19, 31 и 61. Умножив их на число зерен на предыдущих клетках, мы получим девять первых совершенных чисел. (Числа n=29, 37, 41, 43, 47, 53, и 59 не дают числа Мерсенна, т. е. соответствующие им числа 2n-1 составные.)

Формула Евклида позволяет без труда доказывать многочисленные свойства совершенных чисел. Например, все совершенные числа треугольные. Это значит, что, взяв совершенное число шаров, мы всегда сможем сложить из них равносторонний треугольник. Из той же формулы Евклида следует другое любопытное свойство совершенных чисел: все совершенные числа, кроме 6, можно представить в виде частичных сумм ряда кубов последовательных нечетных чисел 13+33+53+ Еще более удивительно, что сумма величин, обратных всем делителям совершенного числа, включая его самого, всегда равна 2. Например, взяв делители совершенного числа 28, получим:

Кроме того, интересны представление совершенных чисел в двоичной форме, чередование последних цифр совершенных чисел и другие любопытные вопросы, которые можно найти в литературе по занимательной математике. Главные из них - наличие нечетного совершенного числа и существование наибольшего совершенного числа - до сих пор не решены.

От совершенных чисел повествование непременно перетекает к дружественным числам. Это такие два числа, каждое из которых равно сумме делителей второго дружественного числа. Наименьшие из дружественных чисел 220 и 284 были известны еще пифагорейцам, которые считали их символом дружбы. Следующая пара дружественных чисел 17296 и 18416 была открыта французским юристом и математиком Пьером Ферма лишь в 1636 году, а последующие числа находили Декарт, Эйлер и Лежандр. Шестнадцатилетний итальянец Никколо Паганини (тезка знаменитого скрипача) в 1867 году потряс математический мир сообщением о том, что числа 1184 и 1210 дружественные! Эту пару, ближайшую к 220 и 284, проглядели все знаменитые математики, изучавшие дружественные числа.

Дружественные числа

Дружественные числа - два натуральных числа́, для которых сумма всех собственных делителей первого числа́ равна второму числу и сумма всех собственных делителей второго числа́ равна первому числу. Иногда частным случаем дружественных чисел считаются совершенные числа: каждое совершенное число дружественно себе.

Ниже приведены пары дружественных чисел, меньших 130 000.

6. 10744 и 10856

7. 12285 и 14595

8. 17296 и 18416

9. 63020 и 76084

10. 66928 и 66992

11. 67095 и 71145

12. 69615 и 87633

13. 79750 и 88730

14. 100485 и 124155

15. 122265 и 139815

16. 122368 и 123152

Прах Диофанта гробница покоит: дивись ей - и камень

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребенком

И половину шестой встретил с пушком на щеках.

Только минула седьмая, с подругой он обручился;

С нею пять лет проведя, сына дождался мудрец.

Только полжизни отцовской возлюбленный сын его прожил,

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе,

Тут и увидел предел жизни печальной своей.

Сколько лет прожил Диофант?

Фигурные числа

Давным-давно, помогая себе при счете камушками, люди обращали внимание на правильные фигуры, которые можно выложить из камушков. Можно просто класть камушки в ряд: один, два, три. Если класть их в два ряда, чтобы получались прямоугольники, мы обнаружим, что получаются все четные числа. Можно выкладывать камни в три ряда: получатся числа, делящиеся на три. Всякое число, которое на что-нибудь делится, можно представить таким прямоугольником, и только простые числа не могут быть "прямоугольными". А что если складывать треугольник? Треугольник получается из трех камушков: два в нижнем ряду, один в верхнем, в ложбинке, образованной двумя нижними камнями. Если добавить камень в нижний ряд, появится еще одна ложбинка; заполнив ее, мы получим ложбинку, образованную двумя камушками второго ряда; положив в нее камень, мы наконец получим треугольник. Итак, нам пришлось добавить три камушка. Следующий треугольник получится, если добавить четыре камушка. Выходит, что на каждом шаге мы добавляем столько камней, сколько их становится в нижнем ряду. Если теперь считать, что один камень - это тоже треугольник, самый маленький, у нас получится такая последовательность чисел: 1, 1+2=3, 1+2+3=6, 1+2+3+4=10, 1+2+3+4+5=15 и т. д. Итак, фигурные числа - это общее название чисел, геометрическое представление которых связано с той или иной геометрической фигурой. Числа древними греками, а вместе с ними Пифагором и пифагорейцами мыслились зримо, в виде камешков, разложенных на песке или на счетной доске - абаке.

По этой причине греки не знали нуля, т. к. его невозможно было "увидеть". Но и единица еще не была полноправным числом, а представлялась как некий "числовой атом", из которого образовывались все числа Пифагорейцы называли единицу "границей между числом и частями", т. е. между целыми числами и дробями, но в то же время видели в ней "семя и вечный корень". Число же определялось как множество, составленное из единиц. Особое положение единицы как "числового атома", роднило ее с точкой, считавшейся "геометрическим атомом". Вот почему Аристотель писал: "Точка есть единица, имеющая положение, единица есть точка без положения". Т. о. пифагорейские числа в современной терминологии - это натуральные числа. Числа камешки раскладывались в виде правильных геометрических фигур, эти фигуры классифицировались. Так возникли числа, сегодня именуемые фигурными. Древние греки, когда им приходилось умножать числа, рисовали прямоугольники; результатом умножения трех на пять был прямоугольник со сторонами три и пять. Это - развитие счета на камушках. Множество закономерностей, возникающих при действиях с числами, были обнаружены древнегреческими учеными при изучений чертежей. И долгие века лучшим подтверждением справедливости таких соотношений считался способ геометрический, с прямоугольниками, квадратами, пирамидами и кубами. В V - IV веках до нашей эры ученые, комбинируя натуральные числа, составляли из них затейливые ряды, придавая элементам этих рядов то или иное геометрическое истолкование. С их помощью можно выложить правильные геометрические фигуры: треугольники, квадраты, пирамиды и т. д. Увлеклись, причем независимо друг от друга, нахождением таких чисел Б. Паскаль и П. Ферма.

Даже в XVII века, когда была уже хорошо развита алгебра с обозначениями величин буквами, со знаками действий, многие считали ее варварской наукой, пригодной для низменных целей- бытовых расчетов, вспомогательных вычислений, - но никак не для благородных научных трудов. Один из крупнейших математиков того времени, Бонавентура Кавальери, пользовался алгеброй, ибо вычислять с ее помощью проще, но для обоснования своих научных результатов все алгебраические выкладки заменял рассуждениями с геометрическими фигурами.

Среди фигурных чисел различают: Линейные числа (т. е. простые числа) - числа, которые делятся только на единицу и на самих себя и, следовательно, представимы в виде последовательности точек, выстроенных в линию: (линейное число 5)

Плоские числа - числа, представимые в виде произведения двух сомножителей: (плоское число 6)

Телесные числа, выражаемые произведением трех сомножителей: (телесное число 8)

Треугольные числа: (треугольные числа 3,6,10)

Квадратные числа: (квадратные числа 4,9,16)

Пятиугольные числа:(пятиугольные числа 5,12)

Именно от фигурных числе пошло выражение "Возвести число в квадрат или куб".

Представление чисел в виде правильных геометрических фигур помогало пифагорейцам находить различные числовые закономерности. Например, чтобы получить общее выражение для n-угольного числа, которое есть не что иное, как сумма n натуральных чисел 1+2+3+. +n, достаточно дополнить это число до прямоугольного числа n(n+1) и увидеть (именно глазами!) равенство

Написав последовательность квадратных чисел, опять-таки легко увидеть глазами выражение для суммы n нечетных чисел:

Наконец, разбивая n-е пятиугольное число на три (n-1) треугольных (после чего остается ещё n "камешков"), легко найти его общее выражение

Разбиением на треугольные числа получается и общая формула для n-го k-угольного числа:

При k=3 мы получаем треугольные числа, а k=4 - квадратные числа и т. д.

Аналогично можно представить число в виде прямоугольника. Для числа 12 это можно сделать многими способами (рис.), а для числа 13 - лишь расположив все предметы в одну линию. Такое древние не считали прямоугольным.

Таким образом, прямоугольными числами являются все составные числа, а не прямоугольными - простые числа. Фигурное представление чисел помогало пифагорейцам открывать законы арифметических операций, а также легко переходить к числовой характеристике геометрических объектов - измерению площадей и объемов.

Так, представляя число 10 в двух формах: 5*2=2*5, легко "увидеть" переместительный закон умножения: a*b=b*a. В том же числе 10: (2+3)*2=2*2+3*2=10 можно "разглядеть" и распределительный закон сложения относительно умножения: (a+b)c=ac+bc.

Наконец, если "камешки", образующие фигурные числа, мыслить в виде равных по площади квадратиков, то, укладывая их в прямоугольное число ab:. автоматически получаем формулу для вычисления площади прямоугольника: S=ab. К фигурным числам также относятся пирамидальные числа, которые получаются, если шарики складывать пирамидой, как раньше складывали ядра около пушки.

Нетрудно заметить, что пирамидальное число равно сумме всех треугольных чисел - от первого до n-го. Формула для вычисления n-го пирамидального числа имеет вид:

«Числовые забавы »

Это число, прежде всего, замечательно тем, что определяет число дней в не високосном году. При делении на 7 оно даёт в остатке 1, эта особенность числа 365 имеет большое значение для нашего семидневного календаря.

Существует ещё одна особенность числа 365:

365=10×10×11×11×12×12, то есть 365 равно в сумме квадратов трёх последовательных чисел, начиная с 10:

10²+11²+12²=100+121+144=365.

Но и это ещё не всё. Число 365 равно сумме квадратов двух следующих чисел, 13 и 14:

13²+14²=169+196=365.

Если человек не знает выше изложенных свойств числа 365, то он при решении примера:

10²+11²+12²+13²+14²

365 начнёт выполнять громоздкие вычисления.

Например:

10²+11²+12²+13²+14² ‗ 100+121+144+169+196 ‗ 221+313+196 ‗ 730

Человек же знающий решит этот пример в уме моментально и получит в ответе 2.

10²+11²+12²+13²+14² ‗ 365+365 ‗ 730

Следующее число, которое я буду описывать – это 999.

Оно намного удивительнее, чем его перевёрнутое изображение – 666 –«звериное число»

Апокалипсиса, вселяющее страх в суеверных людей, но оно по своим арифметическим свойствам ничем не выделяется среди других чисел.

Особенность числа 999 в том, что его можно легко умножить на трёхзначные числа. Тогда получится шестизначное произведение: первые три цифры его есть умножаемое число, уменьшенное на единицу, а остальные три цифры являются дополнениями первых трех до 9. Например,

Стоит лишь взглянуть на следующую строку, чтобы понять происхождение этой особенности:

573×999=573×(1000-1)= 573

Зная эту особенность, мы можем мгновенно умножить любое трёхзначное число на 999.

Например:

947×999=946053, 509×999=508491, 981×999=980019,

543×999=542457, 167×999=166833, 952×999=951048 и т. п.

А так как 999=9×111=3×3×3×37,то вы можете описать целые столбцы шестизначных чисел, кратных 37. Не знакомый же со свойствами числа 999, этого сделать не сможет.

1. Число 1001

Сначала рассмотрим число 1001. Это число сказок, которое царица Шехерезада рассказывала царю Шахрияру.

Число 1001 с первого взгляда кажется самым обыкновенным. Его можно разложить на три последовательных простых множителя 7, 11 и 13. Следовательно, оно является их произведением.

Но в том, что 1001=7×11×13 нет ничего интересного. Замечательно то, что если его умножить на любое трехзначное число, то в результате получится тоже самое число, записанное дважды. Нужно применить распределительный закон умножения.

Разложим 1001 на сумму 1000+1.

Например:

247×1001=247×(1000+1)=247×1000+247×1=247000+247=247247

Число 111111

Следующее число, о котором я хочу рассказать – это 111 111.

Благодаря знакомству со свойствами числа 1001 мы сразу видим, что

111 111=111×1001

Но мы знаем, что

111=3×37, 1001=7×11×13.

Отсюда следует, что наша новая числовая диковинка, состоящая из одних единиц, представляет собой произведение пяти простых множителей. Соединяя же эти 5 множителей в две группы на всевозможные лады, мы получаем 15 пар множителей, дающих в произведении одно и то же число, 111 111.

3×(7×11×13×37)=3×37037=111 111

7×(3×11×13×37)=7×15873=111 111

11×(3×7×13×37)=11×10101=111 111

13×(3×7×11×37)=13×8547=111 111

37×(3×7×11×13)=37×3003=111 111

(3×7)×(11×13×37)=21×5291=111 111

(3×11)×(7×13×37)=33×3367=111 111

(3×13)×(7×11×37)=39×2849=111 111

(3×37)×(7×13×11)=111×1001=111 111

(7×3)×(11×13×37)=21×5291=111 111

(7×11)×(3×13×37)=77×1443=111 111

(7×13)×(11×3×37)=91×1221=111 111

(7×37)×(11×3×13)=259×429=111 111

(11×13)×(7×37×3)=143×777=111 111

(37×11)×(13×7×3)=407×273=111 111

«Фокус с числом»

Арифметические фокусы – честные, добросовестные фокусы. Здесь никто никого не стремится обмануть, ввести транс или усыпить внимание зрителя. Чтобы выполнить такой фокус, не нужны, ни чудодейственная ловкость рук, ни изумительное проворство движений, ни какие – либо другие артистические способности, требующие иногда многолетних упражнений. Кружок товарищей, не посвящённых в математические тайны можно поразить следующими фокусами.

Фокус № 1.

Запишите число 365 два раза: 365 365.

Разделите полученное число на 5: 365 365÷5=73 0 73.

Разделите полученное частное на 73: 73 0 73÷73=1001.

У вас получится число Шехерезады, то есть 1001.

Разгадка фокуса, очень проста: число 365=5×73. То есть число 365365 мы делим на 365 и получаем в ответе 1001.

Фокус № 2.

Пусть кто-нибудь напишет любое трехзначное число, и затем к нему припишет еще раз это же самое число. Получится шестизначное число, состоящее из повторяющихся цифр.

Предложите своему товарищу разделить это число в тайне от вас на 7. Результат нужно передать соседу, который должен разделить его на 11. Полученный результат передается следующему ученику, которого вы просите разделить это число на 13.

Результат третьего деления вы, не глядя, вручаете первому товарищу. Это и есть задуманное число.

Этот фокус объясняется очень просто. Если приписать к трехзначному числу его само – значит умножить его на 1001, или на произведение 7×11×13=1001. Шестизначное число, которое ваш товарищ получит после того, как припишет к заданному числу его само, должно будет делиться без остатка и на 7, и на 11, и на 13.

Фокус № 3.

Запишите любую цифру три раза подряд. Полученное число разделите на 37 и на 3. И у вас получится в ответе ваша цифра.

Разгадка: когда мы делим трехзначное число, записанное тремя одинаковыми цифрами вначале на 37, а затем на 3,то мы, не замечая, делим на 111.

Фокус № 4.

Число 111 111 так же можно использовать для проделывания фокусов, как и число 1001. В данном случае надо предлагать товарищу число однозначное, и попросить записать его уже шесть раз подряд. Делителями здесь могут служить пять простых чисел: 3, 7, 11, 13, 37 и получающиеся из них составные: 21, 33, 39 и т. п. Это дает возможность очень разнообразить выполнение фокуса.

Например: предложите своим товарищам задумать любую цифру, кроме нуля. Нужно умножить ее на 37. Затем умножить на 3. Результат приписать еще раз справа. Полученное число разделить на первоначально задуманную цифру.

Получилось число 111 111.

Разгадка фокуса основана на свойстве числа 111 111. Когда мы умножаем его на 1001 (со свойствами числа 1001 мы познакомились в предыдущей главе) и получилось задуманное число, записанное в начале. Далее при делении на задуманное число явно получается шесть единиц.

Фокус № 5.

Пусть ваш товарищ запишет любое трехзначное число. Справа к нему нужно приписать три нуля. От шестизначного числа предложите отнять первоначальное трехзначное. Затем попросите товарища разделить на задуманное, полученный результат. Частное нужно разделить на 37.

Получилось число 27.

Секрет фокуса понять просто. Он основан на свойствах числа 999.

Число 999 является произведением четырех простых множителей:

3×3×3×37=999, а, следовательно, 999÷37=27

Когда умножают на него трехзначное число, получается результат, состоящий из двух половин: первая – это умножаемое число, уменьшенное на единицу, а вторая – результат вычитания первой половины из множителя.

Фокус № 6.

Число 111 111 111: можно также использовать для наших числовых фокусов:

Спросим у одноклассника его любимую цифру (от 1 до 9).

Попросим эту цифру умножить на 9, а затем полученное произведение умножить на число 123456789. В результате получится число, состоящее из любимых цифр одноклассника.

Например:

5 – это любимая цифра ученика, тогда

45×123456789=555 555 555 т. е. 9×123456789=111 111 111

Заключение

Я думаю, что моя работа является мини-пособием для изучения числового разнообразия. Интересные способы вычисления чисел очень могут помочь в школе, в вузе, на работе, и вообще в жизни. Так в кругу товарищей можно загадывать интересные арифметические фокусы без обманов и волшебства. Исходя из всего вышесказанного, я делаю вывод, что эти и многие другие числовые диковинки желательно знать каждому. Эти знания обязательно понадобятся в жизни!

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

На уроке математики мы проходили тему «Натуральные числа», и мне стало интересно:

Как выглядели первые цифры?

Что знают ученики моего класса о возникновении чисел?

На эти вопросы я попытаюсь ответить в своей работе.

Актуальность темы моего исследования состоит в том, что числа очень важны в нашем мире. Числа сопровождают нашу жизнь повсюду, а задумывались ли мы, что пытаясь подсчитать количество яблок в килограмме, сколько остановок нам ехать до дома, или сколько ступенек до нашего этажа, используем как раз натуральные числа.История возникновения натуральных чисел берет свое начало еще с первобытного общества. Тогда, конечно, оно возникло в самом простейшем виде, но вместе с человечеством развивались и числа. Изначально они использовались только для того, чтобы что-то подсчитать, измерить, т.е. помогали именно в том, что было нужно в практической деятельности людей. Потом число становится частью математики, и история возникновения и развития натуральных чисел обуславливается уже наукой. В самые древние времена люди считали на пальцах, то есть понятия число, в котором мы привыкли его понимать, у них не было. С развитием письменности, развивалось и расширялось понятие числа. Сначала это были черточки, затем были введены другие обозначения, для обозначения больших чисел. До нас дошли вавилонские клинописные таблички с первыми обозначениями натуральных чисел. Сохранившиеся до наших дней «римские цифры» тоже берут свое начало в древности. Огромным прорывом стала индийская позиционная система исчисления, которая позволила записывать числа, используя десять знаков цифр. Греческие философы Пифагор и Архимед тоже внесли свой вклад в историю возникновения чисел. Впервые, в 3 веке до нашей эры, они обосновали понятие бесконечности натурального числа.

Интересно, что ноль появился в системах исчисления гораздо позже, изначально самым маленьким натуральным числом был 1.

Я решил узнать, а что ребята в классе знают о возникновении чисел. Для этого, с разрешения учителя математики, я провёл небольшое анкетирование, которое показало, что 80% одноклассников ничего не знают об истории возникновения натуральных чисел. Я решил сам изучить этот вопрос и с разрешения учителя математики донести изученный материал до одноклассников.

Цель моего исследования - изучение происхождения натуральных чисел и написания цифр.

Задача - узнать историю происхождения натуральных чисел и донести данный материал до одноклассников.

Методы исследования:

    Анкетирование одноклассников.

    Использование информации из Интернет-ресурсов.

    Изучение литературы.

    Обобщение найденного материала.

Практическая значимость: данный материал можно использовать на уроках математики, как дополнительный материал и во внеклассной работе по предмету.

Интересный факт

Австралийские аборигены племени гумулгал, образ жизни которых примерно такой же, как в неолите, пользовались двоичной системой счисления, то есть у них было всего два слова для чисел: урапон — один, и укасар — два. Все прочие числа образуются из этих двух: урапон- укасар — 3, укасар-укасар — 4, укасар-укасар- урапон — 5 и т. д. Нетрудно заметить, что эта система не очень удобна для обращения с большими числами.

Происхождение чисел

Ученые считают, что история возникновения чисел зародилась еще в доисторические времена, когда человек научился считать предметы. Но знаки для обозначения чисел появились значительно позже: их изобрели шумеры — народ, живший в 3000—2000 гг. до н. з. в Месопотамии (ныне в Ираке). История гласит, что на табличках из глины они выдавливали клинообразные черточки, а потом изобрели знаки. Некоторые клинописные знаки обозначали числа 1, 10, 100, то есть были цифрами, остальные числа записывались посредством соединения этих знаков. Пользование цифрами облегчало счет: считали дни недели, головы скота, размеры земельных участков, объемы урожая.

История цифр началась 5 тысячелетий назад в Египте и Месопотамии. И хотя эти два культурных пласта мало пересекались друг с другом, их системы исчисления очень похожи. Первоначально для записей использовали камень или выполняли засечки на дереве. Впоследствии в Месопотамии стали пользоваться глиняными табличками, а в Египте писали на папирусе. Внешний вид цифр в этих культурах отличается, однако одно можно сказать точно: найденные археологами артефакты подтверждают, что это были не просто записи чисел, а именно математические действия.

Искусство счета развивалось с развитием человечества. В те времена, когда человек лишь собирал в лесу плоды и охотился, ему для счета хватало четырех слов: один, два, три и много. Именно так считают сейчас некоторые племена, живущие в джунглях Южной Америки.

Однако, когда люди начали заниматься животноводством и земледелием, то им уже стало необходимо пересчитывать коз в стаде или количество корзин с выращенными плодами (которых было больше трех), заготовленными на зиму.

Способов счета было придумано не мало: делали зарубки на палке по числу предметов, завязывались узлы на веревке, складывались в кучу камешки. Но палку с зарубками с собой не возьмешь, да и камни таскать не очень приятно, а пастуху нужно знать - не отбилась ли какая коза от стада. И тут на помощь приходят пальцы рук - отличный счетный материал, им до сих пор пользуются не только первоклассники. А если предметов больше десяти? Конечно, можно использовать и пальцы на ногах, а дальше? Тут уже ничего не оставалось делать, как придумать десятичную систему, которой мы пользуемся сейчас: считаем десятки; когда наберется десять десятков, называем их сотней; потом десять сотен-тысячей. В Древней Руси десять тысяч называли “тьма”. Отсюда выражение “тьма народу”.

Мы привыкли пользоваться благами цивилизации - автомобилем, телефоном, телевизором и прочей техникой, делающей нашу жизнь легче и интереснее. Тысяча изобретений потребовались для этого, но самым важным из них были первые - колесо и число. Без них не было бы всего нашего технического великолепия. У этих двух изобретений есть общая черта - ни колеса, ни числа нет в природе, и то и другое - плод деятельности человеческого разума.

Казалось бы, что понятие числа должно возникнуть одновременно с умением считать, но это далеко не так. Замечено, что считать до пяти умеют и кошки и свиньи, но чтобы перейти от пяти предметов к числу “пять”, требовалось великое открытие, и вот почему. Пять собак или пять свиней - это совсем не то, что пять орехов. Ведь пять орехов - очень мало, съел - и не заметил, а пять свиней - очень много, их хватит, чтобы долго кормиться большой семье. Пять собак - это стая, которая может хорошо защитить от диких зверей, а пять блох на собаке и разглядеть то трудно. Разве можно их сравнивать?

Знаменитый русский путешественник Н.Н. Миклуха-Маклай, проведши много лет среди туземцев на островах Тихого океана, обнаружил, что у некоторых племен имеется три способа счета: для людей, для животных и для утвари, оружие и прочих неодушевленных предметов. Т.е. там в то время еще не появлялось понятие числа, не было осознано, что три ореха, три козы и три ребенка обладают общим свойством - их количество равно трем.

Итак, появились числа 1, 2, 3…, которыми можно выразить количество коров в стаде, деревья в саду, волос на голове. Эти числа впоследствии получили название натуральных. Гораздо позднее появился ноль, которым обозначали отсутствие рассматриваемых предметов.

Вавилон нумерация

Знакомясь с числами, мы не можем не заняться знаками, с помощью которых числа обозначаются на бумаге. Знаки эти мы называем цифрами.

Самыми древними цифровыми знаками являются вавилонские знаки. Если мы взглянем на карту, то увидим на ней реки Тигр и Ефрат.

Древние греки назвали эту страну Месопотамией, что по-русски обозначает междуречье, так как расположена она была в долине между двумя реками-близнецами. Часть Месопотамии занимало могучее государство, столицей которого был город Вавилон. Уже четыре тысячелетия назад в Вавилоне расцветала наука и существовали библиотеки. Правда, в те времена еще не было печатных книг, но зато существовали глиняные таблички, на которых вавилонские мудрецы писали свои труды. Современные ученые нашли 44 таблички, на которых записана вся математическая наука, известная вавилонцам. Ученые Вавилона пользовались, так называемой, клинописью. Вавилонские числа являются, собственно говоря, комбинации трех клинописных знаков: единица, десятка и сотни.

С помощью этих знаков можно было написать число тысяча, а также любое другое число, при этом использовались, как принцип сложения, так и умножение, а более крупные числа всегда предшествовали меньшим.

Египетская нумерация

Почти столь же древними являются египетские цифры. Для выражения своих мыслей и слов на бумаге египтяне использовали знаки, которые мы в настоящее время называем иероглифами.

Затем иероглифное письмо было заменено более простым и иератическим письмом. В обоих видах письма египтяне имели специальные знаки для цифр. Египтяне вначале писали числа высшего порядка, а затем низшего. При этом использовался принцип сложения или умножения. Египтяне также умели пользоваться дробями. Все египетские дроби имели в числителе единицу, других дробей они не умели даже выговорить (исключение составляло 2/3). Дроби писали так же, как и натуральные числа, только над ними ставилась точка, причем для 1/2 и для 2/3 имели специальные знаки.

Греческая и римская нумерации

Римские цифры общеизвестны и используются еще сейчас, между прочим, на циферблатах часов, надписях на мемориальных досках, при нумерации страниц книг и т.д. Известно, например, что L-это 50, С-это 100, D-это 500, M-это 1000. Знаки C и M это первые буквы слов “centum” -100 и “mille” - 1000. Знаки L и D очевидно также были первыми буквами каких-то слов, однако слова эти до нас не дошли. Можно только предполагать, что это были этрусские слова или же выражения какого-то латинского наречия. С помощью этих цифр римляне писали числа, используя правила сложения и вычитания, например, LX=60(50+10); XL=40(50-10); CM=900(1000-100); MC=1100(1000+100) и т.д. Римские цифры:

I=1 X=10 C=10^2 M=10^3

Римляне пользовались дробями со знаменателями 60 (вавилонские) и со знаменателями 12, 24, 48:

1/24 - это половина, а 1/48 - это одна четвертая 1/12.

Римские ученые осваивали дроби в связи со счетом денег и использованием мер и весов. Римская монета Aс, чеканенная первоначально из меди, весила 1 фунт и делилась на 12 унций. Существовало даже специальное название “deunx” для выражения 11/12 (deunx= de uncia), т.е. Ас без одной унции.

Индийская нумерация

Цифры, которыми мы пользуемся в настоящее время, пришли к нам из Индии.

Европейские народы познакомились с ними благодаря арабам. Известный математик Леонардо Пизанский первым упоминает о них в своем основном труде “Книга Араба” изданном в 1202 году. Польша была одной из первых стран, которая ввела у себя индийскую нумерацию - произошло это в 14 веке. Арифметика, основанная на индийской нумерации, преподавалась в Польше в Краковской академии.

Цифры русского народа

Наши предки пользовались алфавитной нумерацией, то есть числа изображались буквами, над которыми ставится значок - называемый «титло». Чтобы отделить такие буквы - числа от текста, спереди и сзади ставились точки.

Этот способ обозначения цифр называется цифирью. Он был заимствован славянами от средневековых греков - византийцев. Поэтому цифры обозначались только теми буквами, для которых есть соответствия в греческом алфавите.

Для обозначения больших чисел славяне придумали свой оригинальный способ:

десять тысяч - тьма,

десять тем - легион,

десять легионов - леорд,

десять леордов - ворон,

десять воронов - колода.

Такой способ обозначения чисел по сравнению с принятой в Европе десятичной системой был очень неудобен. Поэтому Петр 1 ввел в России привычные для нас десять цифр, отметив буквенную цифирь.

Литература:

1. Владимир Лёвшин “Магистр рассеянных наук”. Издательский Дом Мещерякова, Москва 2007.

2. Льюис Кэррол “История с узелками”. Издательство “Мир”, Москва 1973.

3. Станислав Коваль “От развлечения к знаниям. Математическая смесь”. WYDAWNICTWA. NAUKOWO-TECHNICZNE WARSZAWA 1972.

4. А.П. Савин, В. В. Станцо, А. Ю. Котова “Я познаю мир. Математика”. “Издательство АСТ-ЛТД”, Москва 1997.

Интернет-ресурсы:

    Сайт RealProjoe.

    Древние люди добывали себе пищу главным образом охотой. На крупного зверя – бизона или лося – приходилось охотиться всем племенем: в одиночку ведь с ним не справишься. Командовал облавой обычно самый старый и опытный охотник. Чтобы добыча не ушла, ее надо было окружить, ну вот хотя бы так: пять человек справа, семь сзади, четыре слева. Тут уж без счета никак не обойдешься! И вождь первобытного племени справлялся с этой задачей. Даже в те времена, когда человек не знал таких слов, как “пять” или “семь”, он мог показать числа на пальцах рук.

    Кстати сказать, пальцы сыграли немалую роль в истории счета. Особенно когда люди начали обмениваться друг с другом предметами своего труда. Так, например, желая обменять, сделанное им копье с каменным наконечником на пять шкурок для одежды, человек клал на землю свою руку и показывал, что против каждого пальца его руки нужно положить шкурку. Одна пятерня означала 5, две – 10. Когда рук не хватало, в ход шли и ноги. Две руки и одна нога – 15, две руки и две ноги – 20.

    Часто говорят: “Знаю, как свои пять пальцев”. Не с этого ли далекого времени пошло это выражение, когда знать, что пальцев пять, значило то же, что уметь считать?

    Пальцы были первыми изображениями чисел. Очень сложно было складывать и вычитать. Загибаешь пальцы – складываешь, разгибаешь – вычитаешь. Когда люди еще не знали, что такое цифры, в ход при счете шли и камешки, и палочки. В старину, если крестьянин-бедняк брал в долг у богатого соседа несколько мешков зерна, он выдавал вместо расписки палочку с зарубками – бирку. На палочке делали столько зарубок, сколько было взято мешков. Эту палочку раскалывали: одну половинку должник отдавал богатому соседу, а другую оставлял себе, чтобы тот потом не требовал вместо трех мешков пять. Если давали деньги друг другу в долг, тоже отмечали это на палочке. Словом, в старину бирка служила чем-то вроде записной книжки.

    Как люди научились записывать цифры

    Проходили многие-многие годы. Менялась жизнь человека. Люди приручили животных, на земле появились первые скотоводы, а затем и земледельцы. Постепенно росли знания людей, и чем дальше, тем больше увеличивалась потребность в умении считать и мерить. Скотоводам приходилось пересчитывать свои стада, а при этом счет мог идти уже сотнями и тысячами. Земледельцу надо было знать, сколько земли засеять, чтобы прокормить себя до следующего урожая. А время посева? Ведь, если посеять не во время, урожая не получишь!

    Счет времени по лунным месяцам уже не годился. Нужен был точный календарь. К тому же людям все чаще приходилось сталкиваться с большими числами, запомнить которые трудно или даже невозможно. Нужно было придумать, как их записывать.

    В разных странах и в разные времена это делалось по-разному. Очень разные и порою даже забавные эти “цифры” у разных народов. В Древнем Египте числа первого десятка записывали соответствующим количеством палочек. Вместо цифры “3” – три палочки. А вот для десятков уже другой знак – вроде подковы.

    У древних греков, например, вместо цифр, были буквы. Буквами обозначались цифры и в древних русских книгах: “А” - это один, “Б” - два, “В” – три и т.д.

    У древних римлян были другие цифры. Мы и сейчас пользуемся иногда римскими цифрами. Их можно увидеть и на циферблате часов, и в книге, где обозначается номер главы. Если внимательно рассмотреть, римские цифры похожи на пальцы. Один – это один палец; два – два пальца; пять – это пятерня с отставленным большим пальцем; шесть – это пятерня да еще один палец.

    Так выглядели древние китайские цифры.

    Индейцы майя ухитрялись писать любое число, используя только точку, линию и кружочек.

    Все-таки, откуда же взялись те десять цифр, которыми мы пользуемся сегодня? Наши современные цифры пришли к нам из Индии через арабские страны, поэтому их и называют арабскими. Происхождение каждой из девяти арабских цифр хорошо видно, если их записать в “угловатой” форме.

    Эти цифры произошли от счета по пальцам. Цифру “1” писали так же, как и сейчас, палочкой, цифру “2” – двумя палочками, только не стоячими, а лежачими. Когда эти две палочки быстро писали одну под другой, их соединяли косой черточкой, как мы соединяем буквы в слова. Вот и получился значок, напоминающий нашу теперешнюю двойку. Тройка получалась при скорописи из трех палочек, лежащих одна под другой. В пятерке можно узнать кулак с отставленным пальцем, даже само слово “пять” происходит от слова “пясть” – кисть руки.

    От арабов к нам пришло и слово “цифра” от слова “сифр”. Цифрами называют все десять значков для записи чисел, которыми мы пользуемся: 0, 1, 2, 3, 4, 5, …….

    Современное слово “нуль” появилось гораздо позже, чем “цифра”. Оно происходит от латинского слово “нулла” – “никакая”. Изобретение нуля считается одним из важнейших математических открытий. При новом способе записи чисел значение каждой написанной цифры стало прямо зависеть от нее.

    позиции, места в числе. При помощи десяти цифр можно записать любое, даже самое большое число, и сразу ясно, какая цифра что обозначает.

    Магия чисел

    Какую цифру вы любите больше всего? Семерку? Пятерку? А может, единицу? Вас удивляет такой вопрос: как можно любить, или не любить какие - то цифры, числа? Однако не все так думают. У некоторых есть числа “плохие” и “хорошие”, например, число 7 – хорошее, а 13 – плохое и т.д. Впервые мистическое отношение к числам возникло несколько тысяч лет назад, а в середине века широко распространилось по всей Европе. Была даже целая наука – нумерология, в которой каждое имя имело свое число, получаемое при переводе букв имени в цифры.

    Детей заинтересовало значение числа 7.

    Ведь очень многое в жизни связано с этой цифрой. Дети-дошкольники, когда им исполняется 7 лет, идут в школу; 7 цветов радуги; 7 дней в неделе; 7 звезд в созвездии Большой медведицы; 7 нот нотной грамоты.

    Цифру 7 всегда связывали с понятием везения (удачи). Иногда эту цифру называют знаком ангела.

    Семь считали магическим, священным числом. Это объяснялось еще и тем, что человек воспринимает окружающий мир (свет, запахи, вкус, звуки) через семь “отверстий” в голове (два глаза, два уха, две ноздри, рот).

    Нередко, приписывая числу 7 таинственную силу, знахари вручали больному семь разных лекарств, настоянных на семи разных травах, и советовали пить семь дней.

    Это волшебное число 7 широко использовалось в сказках “Белоснежка и семь гномов”, “Волк и семеро козлят”, “Цветик-семицветик”; в мифах древнего мира.

    Семь раз отмерь, один раз отрежь.

    Семеро одного не ждут.

    Лук – от семи недуг.

    Семь бед – один ответ.

    Семь пядей во лбу.

    Семь пятниц на неделе.

    Много еще можно узнать о значении числа 7, однако каждое число имеет свое магическое значение.

    А сколько звезд на небе? Сколько животных в зоопарке? А сколько ходит детей в детский сад? Дети скоро пойдут в школу и научатся считать и записывать большое количество предметов с помощью этих простых, но нужных десяти цифр.